|
|
冷喷涂Cu-Ti伪合金防污材料的腐蚀行为 |
谷松伦1, 张繁2, 黄国胜2( ), 姜丹2, 董国君1 |
1 哈尔滨工程大学烟台研究院 烟台 264000 2 中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237 |
|
Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater |
GU Songlun1, ZHANG Fan2, HUANG Guosheng2( ), JIANG Dan2, DONG Guojun1 |
1 Yantai Research Institute, Harbin Engineering University, Yantai 264000, China 2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
引用本文:
谷松伦, 张繁, 黄国胜, 姜丹, 董国君. 冷喷涂Cu-Ti伪合金防污材料的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
Songlun GU,
Fan ZHANG,
Guosheng HUANG,
Dan JIANG,
Guojun DONG.
Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1309-1319.
[1] |
Li S, Feng K, Li J Y, et al. Marine antifouling strategies: emerging opportunities for seawater resource utilization [J]. Chem. Eng. J., 2024, 486: 149859
|
[2] |
Rubio D, Casanueva J F, Nebot E. Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system [J]. Appl. Therm. Eng., 2015, 85: 124
|
[3] |
Kumar A, Al-Jumaili A, Bazaka O, et al. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology [J]. Mater. Horiz., 2021, 8: 3201
doi: 10.1039/d1mh01103k
pmid: 34726218
|
[4] |
Cao S, Wang J D, Chen H S, et al. Progress of marine biofouling and antifouling technologies [J]. Chin. Sci. Bull., 2011, 56: 598
|
[5] |
Jin H C, Tian L M, Bing W, et al. Bioinspired marine antifouling coatings: status, prospects, and future [J]. Prog. Mater. Sci., 2022, 124: 100889
|
[6] |
Han X, Wu J H, Zhang X H, et al. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61: 46
doi: 10.1016/j.jmst.2020.07.002
|
[7] |
Luo W H, Wang H T, Yu L, et al. Effect of Zn content on electrochemical properties of Al-Zn-In-Mg sacrificial anode alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1071
|
[7] |
罗维华, 王海涛, 于 林 等. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1071
doi: 10.11902/1005.4537.2022.356
|
[8] |
Duan J Z, Liu C, Liu H L, et al. Research progress of biofouling and its control technology in marine underwater facilities [J]. 2020, 44(8): 162
|
[8] |
段继周, 刘 超, 刘会莲 等. 海洋水下设施生物污损及其控制技术研究进展 [J]. 海洋科学, 2020, 44(8): 162
|
[9] |
Chen J J. Research of the chlorine in the seawater electrolysis antifouling system [D]. Qingdao: Ocean University of China, 2006
|
[9] |
陈佼骄. 电解海水防污系统中有效氯的研究 [D]. 青岛: 中国海洋大学, 2006
|
[10] |
Chen Y F, Li Z X, Wang H N, et al. Corrosion behavior of T2 copper in static artificial seawater [J]. Mater. Prot., 2018, 51(2): 14
|
[10] |
陈云飞, 李争显, 王浩楠 等. T2紫铜在静态人造海水中的腐蚀行为 [J]. 材料保护, 2018, 51(2): 14
|
[11] |
Pang J, Liu X J, Liu N Z, et al. Galvanic corrosion of T2 Cu-alloy and Q235 steel in simulated beishan groundwater environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1435
|
[11] |
庞 洁, 刘相局, 刘娜珍 等. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1435
|
[12] |
Chen Y F, Li Z X, Liu L T, et al. Galvanic corrosion behavior of T2/TC4 galvanic couple in static artificial seawater [J]. Rare Met. Mater. Eng., 2019, 48: 1161
|
[12] |
陈云飞, 李争显, 刘林涛 等. T2/TC4在静态人造海水中的电偶腐蚀行为 [J]. 稀有金属材料与工程, 2019, 48: 1161
|
[13] |
Tian J, Xu K, Hu J H, et al. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design [J]. J. Mater. Sci. Technol., 2021, 79: 62
doi: 10.1016/j.jmst.2020.11.038
|
[14] |
Li W Y, Cao C C, Yang X W, et al. Cold spraying hybrid processing technology and its application [J]. J. Mater. Eng., 2019, 47(11): 53
|
[14] |
李文亚, 曹聪聪, 杨夏炜 等. 冷喷涂复合加工制造技术及其应用 [J]. 材料工程, 2019, 47(11): 53
doi: 10.11868/j.issn.1001-4381.2019.000262
|
[15] |
Li T R, Li X, Liu C, et al. Principle and application of localized scanning electrochemical measurement technology [J]. Modern Chem. Res., 2024, (8): 14
|
[15] |
李天瑞, 李 鑫, 刘 畅 等. 微区扫描电化学测试技术原理及其应用进展 [J]. 当代化工研究, 2024, (8): 14
|
[16] |
Milagre M X, Donatus U, Mogili N V, et al. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45: 162
doi: 10.1016/j.jmst.2019.11.016
|
[17] |
Wu Y D, Lu J, Sun C C, et al. Progress of the additive manufacturing applications of cold spray technique [J]. Surf. Technol., 2024, 53(16): 19
|
[17] |
吴应东, 卢 静, 孙澄川 等. 冷喷涂增材制造技术应用研究进展 [J]. 表面技术, 2024, 53(16): 19
|
[18] |
Huang G S, Wang H R, Li X B, et al. Deposition efficiency of low pressure cold sprayed aluminum coating [J]. Mater. Manuf. Process., 2018, 33: 1100
|
[19] |
Goldbaum D, Shockley J M, Chromik R R, et al. The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats [J]. J. Therm. Spray Technol., 2012, 21: 288
|
[20] |
Yang J W, Li W Y, Xing C H, et al. Research progress in cold spraying of copper coating [J]. Mater. Prot., 2022, 55(1): 58
|
[20] |
杨景文, 李文亚, 邢词皓 等. 冷喷涂铜涂层研究进展 [J]. 材料保护, 2022, 55(1): 58
|
[21] |
Sun Y J, Zhang J L, Zhai H M, et al. Corrosion behaviors cold spraying Zn-Al composite coating in 3.5wt.%NaCl solution [J]. J. Lanzhou Univ. Technol., 2023, 49(2): 17
|
[21] |
孙永江, 张金玲, 翟海民 等. Zn-Al冷喷涂复合涂层耐3.5wt.%NaCl溶液腐蚀行为 [J]. 兰州理工大学学报, 2023, 49(2): 17
|
[22] |
Zeng Y H, Yang F F, Chen Z N, et al. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61: 186
doi: 10.1016/j.jmst.2020.05.024
|
[23] |
Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
|
[23] |
高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
|
[24] |
Wang K, Xu K W, Tian J J, et al. Tailoring the micro-galvanic dissolution behavior and antifouling performance through laminated-structured Cu-X composite coating [J]. J. Therm. Spray Technol., 2021, 30: 1566
|
[25] |
Li Z Q, Hu J Y, Qiu S W, et al. Analysis on galvanic corrosion behavior of TA2, BAl7-7-2-2 and 921A [J]. Dev. Appl. Mater., 2018, 33(6): 46
|
[25] |
李志强, 胡靖元, 邱胜闻 等. 工业纯钛TA2、镍铝青铜BAl7-7-2-2与船用钢921A电偶腐蚀行为分析 [J]. 材料开发与应用, 2018, 33(6): 46
|
[26] |
Zhang X Y, Wang L D, Sun W, et al. Effect of corrosion products of pure iron on the corrosion behavior of pure iron and its mechanism [J]. Mater. Prot., 2021, 54(7): 30
|
[26] |
张心宇, 王立达, 孙 文 等. 纯铁的腐蚀产物对纯铁腐蚀行为的影响及其机理研究 [J]. 材料保护, 2021, 54(7): 30
|
[27] |
Ding R, Li X B, Wang J, et al. Study on antifouling effect of cold spray Cu-Cu2O coating [J]. Paint Coat. Ind., 2013, 43(9): 1
|
[27] |
丁 锐, 李相波, 王 佳 等. 冷喷涂Cu-Cu2O涂层防污性能研究 [J]. 涂料工业, 2013, 43(9): 1
|
[28] |
Elmas S, Skipper K, Salehifar N, et al. Cyclic copper uptake and release from natural seawater—a fully sustainable antifouling technique to prevent marine growth [J]. Environ. Sci. Technol., 2021, 55: 757
|
[29] |
Tian J J, Wang K, Xu K W, et al. Effect of coating composition on the micro-galvanic dissolution behavior and antifouling performance of plasma-sprayed laminated-structured Cu-Ti composite coating [J]. Surf. Coat. Technol., 2021, 410: 126963
|
[30] |
Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
|
[30] |
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|