Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1309-1319     CSTR: 32134.14.1005.4537.2024.347      DOI: 10.11902/1005.4537.2024.347
  研究报告 本期目录 | 过刊浏览 |
冷喷涂Cu-Ti伪合金防污材料的腐蚀行为
谷松伦1, 张繁2, 黄国胜2(), 姜丹2, 董国君1
1 哈尔滨工程大学烟台研究院 烟台 264000
2 中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater
GU Songlun1, ZHANG Fan2, HUANG Guosheng2(), JIANG Dan2, DONG Guojun1
1 Yantai Research Institute, Harbin Engineering University, Yantai 264000, China
2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

谷松伦, 张繁, 黄国胜, 姜丹, 董国君. 冷喷涂Cu-Ti伪合金防污材料的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
Songlun GU, Fan ZHANG, Guosheng HUANG, Dan JIANG, Guojun DONG. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1309-1319.

全文: PDF(15506 KB)   HTML
摘要: 

构建了一种Cu-Ti伪合金微电偶体系,加速Cu的腐蚀速率提高其在海洋环境的防污效果,并进行了多种腐蚀电化学表征验证。采用冷喷涂方法制备了0%、5%、10%、15% (质量分数) 4种不同Ti含量的Cu-Ti伪合金防污材料,并对4种防污材料采用扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)进行微观形貌及成分检测。在天然海水中进行自腐蚀电位、动电位极化曲线电化学测试以及扫描振动电极(SVET)微区电化学测试,结合电感耦合等离子发射光谱分析仪(ICP)分析了Cu-Ti伪合金的腐蚀行为及腐蚀规律。结果表明,在天然海水中,试样表面Cu和Ti颗粒可形成微电偶对。随着Ti质量分数的增加,Cu和Ti颗粒组成的微原电池数量增加,防污材料腐蚀速率加快。Ti质量分数为15%时,腐蚀速率最快,Cu离子释放速率提高了近10倍,可达280 μg/(cm2·d)。该方法可以较好的加速Cu-Ti伪合金材料中Cu离子的释放,对提升铜合金的防污效果具有良好的促进作用。

关键词 冷喷涂紫铜微电偶腐蚀腐蚀行为海洋防污    
Abstract

Herein, as the candidate material of anti-fouling, four Cu-Ti pseudo alloys with different Ti contents (mass fraction) of 0%, 5%, 10%, and 15% were prepared by cold spraying method, and their microstructure and composition were characterized by SEM, EDS, and XRD. Meanwhile their corrosion performance in natural seawater is assessed by means of electrochemical measurements, namely free corrosion potential and potentiodynamic polarization curve, scanning vibration electrode (SVET) micro electrochemical measurement and inductively coupled plasma emission spectrum analyzer. Results indicated that in natural seawater, Cu particles and Ti particles on the surface of the prepared pseudo alloy Cu-Ti anode can naturally form micro galvanic couples. With the increase of Ti mass fraction, the corrosion rate of the prepared pseudo alloy Cu-Ti anode is accelerated due to the increased number of micro galvanic cells composed of Cu and Ti particles. When the Ti mass fraction is 15%, the corrosion rate is the fastest, and the copper ion release rate increases by nearly ten times, reaching 280 μg/(cm2·d). This method can effectively accelerate the release of Cu ions from the Cu-Ti pseudo alloy materials and promote their anti-fouling effect.

Key wordscold spray    pure copper    micro-galvanic corrosion    corrosion behavior    marine anti-fouling
收稿日期: 2024-10-27      32134.14.1005.4537.2024.347
ZTFLH:  TG172  
基金资助:国家自然科学基金(U2141251)
通讯作者: 黄国胜,E-mail:huanggs@sunrui.net,研究方向为腐蚀与防护和冷喷涂技术
Corresponding author: HUANG Guosheng, E-mail: huanggs@sunrui.net
作者简介: 谷松伦,女,2000年生,硕士生
图1  喷涂用粉末形貌
图2  TUP2和TA2粉末的粒径分布
图3  喷涂态和经热处理的Ti含量不同的Cu-Ti伪合金宏观形貌
图4  Ti含量不同的Cu-Ti伪合金表面微观形貌
图5  喷涂态Cu-Ti中Ti含量与原料粉中其名义含量的对比
图6  Cu-10Ti伪合金微观结构以及EDS线扫描和面扫描结果
图7  喷涂态Cu、Cu-5Ti、Cu-10Ti、Cu-15Ti的孔隙率
图8  原始粉末及试样表面XRD图谱
图9  Cu-Ti伪合金在天然海水中浸泡30 d后的腐蚀形貌
图10  电偶腐蚀原理图
图11  Cu-Ti伪合金在天然海水中浸泡30 d后的XRD图谱
图12  Cu-Ti伪合金在天然海水中浸泡30 d后的开路电位
图13  Cu-Ti伪合金在刚浸入天然海水时的SVET图谱
图14  Cu-Ti伪合金在天然海水中浸泡24 h后的SVET图谱
图15  4种试样在天然海水中的Cu离子溶出速率
[1] Li S, Feng K, Li J Y, et al. Marine antifouling strategies: emerging opportunities for seawater resource utilization [J]. Chem. Eng. J., 2024, 486: 149859
[2] Rubio D, Casanueva J F, Nebot E. Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system [J]. Appl. Therm. Eng., 2015, 85: 124
[3] Kumar A, Al-Jumaili A, Bazaka O, et al. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology [J]. Mater. Horiz., 2021, 8: 3201
doi: 10.1039/d1mh01103k pmid: 34726218
[4] Cao S, Wang J D, Chen H S, et al. Progress of marine biofouling and antifouling technologies [J]. Chin. Sci. Bull., 2011, 56: 598
[5] Jin H C, Tian L M, Bing W, et al. Bioinspired marine antifouling coatings: status, prospects, and future [J]. Prog. Mater. Sci., 2022, 124: 100889
[6] Han X, Wu J H, Zhang X H, et al. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61: 46
doi: 10.1016/j.jmst.2020.07.002
[7] Luo W H, Wang H T, Yu L, et al. Effect of Zn content on electrochemical properties of Al-Zn-In-Mg sacrificial anode alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1071
[7] 罗维华, 王海涛, 于 林 等. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1071
doi: 10.11902/1005.4537.2022.356
[8] Duan J Z, Liu C, Liu H L, et al. Research progress of biofouling and its control technology in marine underwater facilities [J]. 2020, 44(8): 162
[8] 段继周, 刘 超, 刘会莲 等. 海洋水下设施生物污损及其控制技术研究进展 [J]. 海洋科学, 2020, 44(8): 162
[9] Chen J J. Research of the chlorine in the seawater electrolysis antifouling system [D]. Qingdao: Ocean University of China, 2006
[9] 陈佼骄. 电解海水防污系统中有效氯的研究 [D]. 青岛: 中国海洋大学, 2006
[10] Chen Y F, Li Z X, Wang H N, et al. Corrosion behavior of T2 copper in static artificial seawater [J]. Mater. Prot., 2018, 51(2): 14
[10] 陈云飞, 李争显, 王浩楠 等. T2紫铜在静态人造海水中的腐蚀行为 [J]. 材料保护, 2018, 51(2): 14
[11] Pang J, Liu X J, Liu N Z, et al. Galvanic corrosion of T2 Cu-alloy and Q235 steel in simulated beishan groundwater environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1435
[11] 庞 洁, 刘相局, 刘娜珍 等. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1435
[12] Chen Y F, Li Z X, Liu L T, et al. Galvanic corrosion behavior of T2/TC4 galvanic couple in static artificial seawater [J]. Rare Met. Mater. Eng., 2019, 48: 1161
[12] 陈云飞, 李争显, 刘林涛 等. T2/TC4在静态人造海水中的电偶腐蚀行为 [J]. 稀有金属材料与工程, 2019, 48: 1161
[13] Tian J, Xu K, Hu J H, et al. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design [J]. J. Mater. Sci. Technol., 2021, 79: 62
doi: 10.1016/j.jmst.2020.11.038
[14] Li W Y, Cao C C, Yang X W, et al. Cold spraying hybrid processing technology and its application [J]. J. Mater. Eng., 2019, 47(11): 53
[14] 李文亚, 曹聪聪, 杨夏炜 等. 冷喷涂复合加工制造技术及其应用 [J]. 材料工程, 2019, 47(11): 53
doi: 10.11868/j.issn.1001-4381.2019.000262
[15] Li T R, Li X, Liu C, et al. Principle and application of localized scanning electrochemical measurement technology [J]. Modern Chem. Res., 2024, (8): 14
[15] 李天瑞, 李 鑫, 刘 畅 等. 微区扫描电化学测试技术原理及其应用进展 [J]. 当代化工研究, 2024, (8): 14
[16] Milagre M X, Donatus U, Mogili N V, et al. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45: 162
doi: 10.1016/j.jmst.2019.11.016
[17] Wu Y D, Lu J, Sun C C, et al. Progress of the additive manufacturing applications of cold spray technique [J]. Surf. Technol., 2024, 53(16): 19
[17] 吴应东, 卢 静, 孙澄川 等. 冷喷涂增材制造技术应用研究进展 [J]. 表面技术, 2024, 53(16): 19
[18] Huang G S, Wang H R, Li X B, et al. Deposition efficiency of low pressure cold sprayed aluminum coating [J]. Mater. Manuf. Process., 2018, 33: 1100
[19] Goldbaum D, Shockley J M, Chromik R R, et al. The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats [J]. J. Therm. Spray Technol., 2012, 21: 288
[20] Yang J W, Li W Y, Xing C H, et al. Research progress in cold spraying of copper coating [J]. Mater. Prot., 2022, 55(1): 58
[20] 杨景文, 李文亚, 邢词皓 等. 冷喷涂铜涂层研究进展 [J]. 材料保护, 2022, 55(1): 58
[21] Sun Y J, Zhang J L, Zhai H M, et al. Corrosion behaviors cold spraying Zn-Al composite coating in 3.5wt.%NaCl solution [J]. J. Lanzhou Univ. Technol., 2023, 49(2): 17
[21] 孙永江, 张金玲, 翟海民 等. Zn-Al冷喷涂复合涂层耐3.5wt.%NaCl溶液腐蚀行为 [J]. 兰州理工大学学报, 2023, 49(2): 17
[22] Zeng Y H, Yang F F, Chen Z N, et al. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61: 186
doi: 10.1016/j.jmst.2020.05.024
[23] Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
[23] 高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
[24] Wang K, Xu K W, Tian J J, et al. Tailoring the micro-galvanic dissolution behavior and antifouling performance through laminated-structured Cu-X composite coating [J]. J. Therm. Spray Technol., 2021, 30: 1566
[25] Li Z Q, Hu J Y, Qiu S W, et al. Analysis on galvanic corrosion behavior of TA2, BAl7-7-2-2 and 921A [J]. Dev. Appl. Mater., 2018, 33(6): 46
[25] 李志强, 胡靖元, 邱胜闻 等. 工业纯钛TA2、镍铝青铜BAl7-7-2-2与船用钢921A电偶腐蚀行为分析 [J]. 材料开发与应用, 2018, 33(6): 46
[26] Zhang X Y, Wang L D, Sun W, et al. Effect of corrosion products of pure iron on the corrosion behavior of pure iron and its mechanism [J]. Mater. Prot., 2021, 54(7): 30
[26] 张心宇, 王立达, 孙 文 等. 纯铁的腐蚀产物对纯铁腐蚀行为的影响及其机理研究 [J]. 材料保护, 2021, 54(7): 30
[27] Ding R, Li X B, Wang J, et al. Study on antifouling effect of cold spray Cu-Cu2O coating [J]. Paint Coat. Ind., 2013, 43(9): 1
[27] 丁 锐, 李相波, 王 佳 等. 冷喷涂Cu-Cu2O涂层防污性能研究 [J]. 涂料工业, 2013, 43(9): 1
[28] Elmas S, Skipper K, Salehifar N, et al. Cyclic copper uptake and release from natural seawater—a fully sustainable antifouling technique to prevent marine growth [J]. Environ. Sci. Technol., 2021, 55: 757
[29] Tian J J, Wang K, Xu K W, et al. Effect of coating composition on the micro-galvanic dissolution behavior and antifouling performance of plasma-sprayed laminated-structured Cu-Ti composite coating [J]. Surf. Coat. Technol., 2021, 410: 126963
[30] Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
[30] 滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
[1] 蔡科涛, 季磊, 张震, 冯强, 邓伟林, 兰贵红, 何莎, 赵占勇, 白培康. Mg-Gd-Y-Zn-Zr合金在NaClNa2SO4 溶液中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[2] 范世林, 杜娟, 杨少丹, 周延军, 宋克兴, 张国赏, 岳鹏飞, 杨冉, 王晓军. Cu-15Ni-8Sn合金在含S2-3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1408-1416.
[3] 段敬民, 董勇, 缪东美, 杨玉婧, 毛凌波, 章争荣. 热处理工艺对Al0.5CoCrFeNi高熵合金在不同介质下腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[4] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[5] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[6] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[7] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[8] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[9] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[10] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[11] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[12] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[13] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[14] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[15] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.