|
|
氧含量对国产FeCrAl基合金长周期腐蚀性能的影响 |
高云霞1,2, 何琨3( ), 张瑞谦3, 梁雪4, 王先平5, 方前锋5 |
1 华北电力大学数理学院 北京 102206 2 华北电力大学 河北省物理学与能源技术重点实验室 保定 071000 3 中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610041 4 上海大学 微结构重点实验室 上海 200444 5 中国科学院固体物理研究所 材料物理重点实验室 合肥 230031 |
|
Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters |
GAO Yunxia1,2, HE Kun3( ), ZHANG Ruiqian3, LIANG Xue4, WANG Xianping5, FANG Qianfeng5 |
1 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China 2 Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071000, China 3 National Key Laboratory for Science and Technology on Reactor and Materials, Nuclear Power Institute of China, Chengdu 610041, China 4 Laboratory for Microstructures, ShangHai University, Shanghai 200444, China 5 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China |
引用本文:
高云霞, 何琨, 张瑞谦, 梁雪, 王先平, 方前锋. 氧含量对国产FeCrAl基合金长周期腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
Yunxia GAO,
Kun HE,
Ruiqian ZHANG,
Xue LIANG,
Xianping WANG,
Qianfeng FANG.
Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1081-1088.
[1] |
Palaniappan S, Joshi S S, Sharma S, et al. Additive manufacturing of FeCrAl alloys for nuclear applications-a focused review [J]. Nucl. Mater. Energy, 2024, 40: 101702
|
[2] |
Wang H, Gao Y X, Sun M, et al. Effects of Nb addition and heat treatment on the microstructure, mechanical property and internal friction behavior of FeCrAlMo cladding alloys [J]. J. Nucl. Mater., 2022, 572: 154044
|
[3] |
Rebak R B, Yin L, Jurewicz T B, et al. Acid dissolution behavior of ferritic FeCrAl tubes candidates for nuclear fuel cladding [J]. Corrosion, 2021, 77: 1321
doi: 10.5006/3965
|
[4] |
Zhang Y Y, Wang H, An X G, et al. Dynamic strain aging behavior of accident tolerance fuel cladding FeCrAl-based alloy for advanced nuclear energy [J]. J. Mater. Sci., 2021, 56: 8815
|
[5] |
Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-Hydrogen environments [J]. J. Nucl. Mater., 2013, 440: 420
|
[6] |
Wan H Y, An X G, Kong Q Q, et al. Fabrication of ultrafine grained FeCrAl-0.6wt.%ZrC alloys with enhanced mechanical properties by spark plasma sintering [J]. Adv. Powder Technol., 2021, 32: 1380
|
[7] |
Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys [J]. Acta Mater., 2018, 144: 716
|
[8] |
Pan D, Zhang R Q, Wang H J, et al. In steam short-time oxidation kinetics of FeCrAl alloys [J]. J. Mater. Eng. Perform., 2018, 27: 6407
|
[9] |
Rybicki G C, Smialek J L. Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr [J]. Oxid. Met., 1989, 31: 275
|
[10] |
Terrani K A, Pint B A, Kim Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments [J]. J. Nucl. Mater., 2016, 479: 36
|
[11] |
Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
|
[12] |
Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl. Sci. Technol., 2008, 45: 975
|
[13] |
Qiu B W, Wang J, Deng Y B, et al. A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding [J]. Nucl. Eng. Technol., 2020, 52: 1
|
[14] |
Yin H B, Hu S W, Huang M Y J, et al. Research progress on corrosion resistance for FeCrAl alloy of accident tolerant fuel cladding material [J]. Nucl. Safety, 2023, 22: 80
|
[14] |
(尹泓卜, 胡述伟, 黄莫一杰 等. 耐事故燃料包壳材料FeCrAl合金耐腐蚀性能研究[J]. 核安全, 2023, 22: 80)
|
[15] |
Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
|
[16] |
Bischoff J, Motta A T. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water [J]. J. Nucl. Mater., 2012, 424: 261
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|