Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1081-1088     CSTR: 32134.14.1005.4537.2024.318      DOI: 10.11902/1005.4537.2024.318
  研究报告 本期目录 | 过刊浏览 |
氧含量对国产FeCrAl基合金长周期腐蚀性能的影响
高云霞1,2, 何琨3(), 张瑞谦3, 梁雪4, 王先平5, 方前锋5
1 华北电力大学数理学院 北京 102206
2 华北电力大学 河北省物理学与能源技术重点实验室 保定 071000
3 中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610041
4 上海大学 微结构重点实验室 上海 200444
5 中国科学院固体物理研究所 材料物理重点实验室 合肥 230031
Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters
GAO Yunxia1,2, HE Kun3(), ZHANG Ruiqian3, LIANG Xue4, WANG Xianping5, FANG Qianfeng5
1 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
2 Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071000, China
3 National Key Laboratory for Science and Technology on Reactor and Materials, Nuclear Power Institute of China, Chengdu 610041, China
4 Laboratory for Microstructures, ShangHai University, Shanghai 200444, China
5 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
引用本文:

高云霞, 何琨, 张瑞谦, 梁雪, 王先平, 方前锋. 氧含量对国产FeCrAl基合金长周期腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
Yunxia GAO, Kun HE, Ruiqian ZHANG, Xue LIANG, Xianping WANG, Qianfeng FANG. Effect of Dissolved Oxygen on Long-term Corrosion of Domestic FeCrAl Based Alloys in High Temperature and High Pressure Waters[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1081-1088.

全文: PDF(11007 KB)   HTML
摘要: 

本文利用高温高压腐蚀实验装置对国产FeCrAl基合金(M2合金)开展了在360 ℃、饱和蒸汽压、不同氧环境下的长周期腐蚀实验研究,通过SEM和TEM分析了合金表面氧化膜在不同腐蚀环境下的微观形貌和物相结构。结果表明,在3种溶解氧的高温高压水环境下,M2合金腐蚀3000 h后的氧化膜厚度分别为1.4、2.3和0.1 μm。随着氧含量的增加,氧化膜物相由低氧环境下的尖晶石类结构的(Fe, Cr)3O4、M3O4和M2O3混合结构,转变为饱和氧环境下的赤铁矿类的(Fe, Cr)2O3结构;膜结构由典型的双层氧化膜转变为致密的单层氧化膜;腐蚀行为由腐蚀失重转变为腐蚀增重。以上规律表明,溶解氧对国产M2合金的腐蚀行为有重要的影响。尤为重要的是,在饱和氧环境下,M2合金表现出最佳的抗腐蚀性能。

关键词 国产FeCrAl基合金长周期腐蚀溶解氧腐蚀规律双层氧化膜    
Abstract

Ferritic Fe-Cr-Al based alloys have been considered as one of the most promising candidates as clad material for the accident tolerant fuel (ATF) owing to their excellent high temperature oxidation and corrosion resistance. The corrosion performance of Fe-Cr-Al alloys in highly oxidizing environments (such as high temperature, high pressure hydrothermal conditions) was very important to determine their suitability served as ATF cladding materials, especially for the domestic Fe-Cr-Al alloys. Herein, the corrosion behavior of domestic ferritic Fe-13Cr-4Al-2Mo-0.65Nb-0.4Ta-0.05Y alloy (mass fraction, %, designated as M2 hereafter) was examined via an autoclave at 360 ℃ in the condition of saturated vapor pressure with different dissolved-oxygen contents: namelytotal deoxidization (DEO), dissolved-oxygen concentration of 100 μg/L O2 (DO100) and saturated dissolved-oxygen exposures (SDO) respectively for a long term. Then the formed oxide scales on M2 alloy were characterized by using XRD and SEM combined with EDS, and TEM in terms of their morphology and phase constituents, as well as elemental distribution and microstructure. The results indicated that the thickness of oxide scales on FeCrAl based alloy was 1.4, 2.3 and 0.1 μm in conditions DEO, DO100 and SDO, respectively. And with the increasing of dissolved oxygen contents, the phase constituent of the formed oxide scale changes from a mixed structure of spinel-like ((Fe, Cr)3O4), M3O4 and M2O3 in DEO conditions to the mixture of hematite-like (Fe, Cr)3O4 and (Fe, Cr)2O3 in DO100 conditions, and then a thin and dense monolayer structure of hematite (Fe, Cr)2O3 in SDO conditions. Correspondingly, the corrosion kinetics also changed from mass loss into mass gain. All the above results indicated that dissolved-oxygen had a significant influence on the corrosion of domestic FeCrAl based alloy in high temperature water, and it is worth noted that the domestic FeCrAl based alloy revealed an excellent corrosion resistance especially in SDO condition.

Key wordsdomestic FeCrAl based alloy    long-term corrosion    dissolved oxygen    corrosion behavior    duplex oxide films
收稿日期: 2024-09-29      32134.14.1005.4537.2024.318
ZTFLH:  TG174  
基金资助:国家自然科学基金(12275318)
通讯作者: 何琨,E-mail:kunhe14@163.com,研究方向为先进核电耐事故燃料(ATF)包壳材料的研发和性能优化
Corresponding author: HE Kun, E-mail: kunhe14@163.com
作者简介: 高云霞,女,1982年生,博士生,副教授
图1  不同溶解氧环境下M2合金质量随腐蚀时间的变化曲线以及腐蚀后的宏观形貌
图2  M2合金在不同溶解氧的环境中腐蚀3000 h后的XRD谱
图3  不同溶解氧环境下腐蚀3000 h后M2合金表面SEM图
Dissolved oxygen environmentsFeCrAlMoNbO
SDO68.8112.792.801.640.6113.35
DEOOuter layer 1#70.081.9400027.98
Inner layer 2#47.9720.784.802.740.3723.34
DO10048.4218.272.091.840.3229.06
表1  不同溶解氧环境下腐蚀3000 h后M2合金表面氧化膜的能谱(EDS)点扫描结果 (mass fraction / %)
图4  M2合金在不同溶解氧环境下腐蚀3000 h后氧化膜横截面的明场STEM图像
图5  不同溶解氧环境下M2合金表面氧化膜横截面的面扫描和线扫描
图6  不同氧环境下腐蚀后横跨氧化膜截面的选区电子衍射图
图7  DEO环境下腐蚀后横跨氧化膜截面的选区电子衍射图
图8  不锈钢表面双层氧化膜结构示意图
[1] Palaniappan S, Joshi S S, Sharma S, et al. Additive manufacturing of FeCrAl alloys for nuclear applications-a focused review [J]. Nucl. Mater. Energy, 2024, 40: 101702
[2] Wang H, Gao Y X, Sun M, et al. Effects of Nb addition and heat treatment on the microstructure, mechanical property and internal friction behavior of FeCrAlMo cladding alloys [J]. J. Nucl. Mater., 2022, 572: 154044
[3] Rebak R B, Yin L, Jurewicz T B, et al. Acid dissolution behavior of ferritic FeCrAl tubes candidates for nuclear fuel cladding [J]. Corrosion, 2021, 77: 1321
doi: 10.5006/3965
[4] Zhang Y Y, Wang H, An X G, et al. Dynamic strain aging behavior of accident tolerance fuel cladding FeCrAl-based alloy for advanced nuclear energy [J]. J. Mater. Sci., 2021, 56: 8815
[5] Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-Hydrogen environments [J]. J. Nucl. Mater., 2013, 440: 420
[6] Wan H Y, An X G, Kong Q Q, et al. Fabrication of ultrafine grained FeCrAl-0.6wt.%ZrC alloys with enhanced mechanical properties by spark plasma sintering [J]. Adv. Powder Technol., 2021, 32: 1380
[7] Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys [J]. Acta Mater., 2018, 144: 716
[8] Pan D, Zhang R Q, Wang H J, et al. In steam short-time oxidation kinetics of FeCrAl alloys [J]. J. Mater. Eng. Perform., 2018, 27: 6407
[9] Rybicki G C, Smialek J L. Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr [J]. Oxid. Met., 1989, 31: 275
[10] Terrani K A, Pint B A, Kim Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments [J]. J. Nucl. Mater., 2016, 479: 36
[11] Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
[12] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl. Sci. Technol., 2008, 45: 975
[13] Qiu B W, Wang J, Deng Y B, et al. A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding [J]. Nucl. Eng. Technol., 2020, 52: 1
[14] Yin H B, Hu S W, Huang M Y J, et al. Research progress on corrosion resistance for FeCrAl alloy of accident tolerant fuel cladding material [J]. Nucl. Safety, 2023, 22: 80
[14] (尹泓卜, 胡述伟, 黄莫一杰 等. 耐事故燃料包壳材料FeCrAl合金耐腐蚀性能研究[J]. 核安全, 2023, 22: 80)
[15] Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
[16] Bischoff J, Motta A T. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water [J]. J. Nucl. Mater., 2012, 424: 261
[1] 李顺平, 党莹, 洪晓峰, 宁方强. 水化学对690镍基合金高温高压水腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1035-1040.
[2] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[3] 陈翰林, 马力, 黄国胜, 杜敏. 溶解氧和流速对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 724-732.
[4] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[5] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[6] 周开河,方云辉,徐孝忠,江炯,郭小平,刘栓,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响II—温度和溶解氧浓度[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[7] 徐鸿, 袁军, 朱忠亮, 张乾, 张乃强. 铁素体-马氏体P92钢在600 ℃/25 MPa超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2014, 34(2): 119-124.
[8] 王新华, 杨国勇, 黄海, 陈振华, 王丽梅. 埋地钢质管道交流杂散电流腐蚀规律研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 293-297.
[9] 马桂君 . G105钻具钢在含有溶解氧条件下的腐蚀规律[J]. 中国腐蚀与防护学报, 2008, 28(2): 108-111 .
[10] 朱相荣; 黄桂桥; 林乐耘; 刘大扬 . 金属材料长周期海水腐蚀规律研究[J]. 中国腐蚀与防护学报, 2005, 25(3): 142-148 .