Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1107-1116     CSTR: 32134.14.1005.4537.2024.272      DOI: 10.11902/1005.4537.2024.272
  研究报告 本期目录 | 过刊浏览 |
典型沿海地区五种电网材料在大气环境下的腐蚀行为研究
柳森1, 胡家元1, 温小涵1, 朱仁政2, 李延伟1, 杨小佳2()
1 国网浙江省电力有限公司电力科学研究院 杭州 310014
2 北京科技大学新材料技术研究院 北京 100083
Corrosion Behavior of Five Type of Power Grid Materials in Natural Coastal Environments
LIU Sen1, HU Jiayuan1, WEN Xiaohan1, ZHU Renzheng2, LI Yanwei1, YANG Xiaojia2()
1 Electric Power Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China
2 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

柳森, 胡家元, 温小涵, 朱仁政, 李延伟, 杨小佳. 典型沿海地区五种电网材料在大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1107-1116.
Sen LIU, Jiayuan HU, Xiaohan WEN, Renzheng ZHU, Yanwei LI, Xiaojia YANG. Corrosion Behavior of Five Type of Power Grid Materials in Natural Coastal Environments[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1107-1116.

全文: PDF(17528 KB)   HTML
摘要: 

研究了5种常用电网材料:碳钢、Zn、镀锌钢(ZF)、Al和Cu在典型沿海地区大气环境下的腐蚀行为。通过为期1 a的暴露实验,结合锈层电化学及腐蚀产物的物相分析,系统分析了各材料锈层的形貌和截面特征,同时结合为期4个月的腐蚀电流在线监测数据,探讨了不同材料的腐蚀速率及其机理。结果表明,沿海环境对不同材料的腐蚀影响显著,锈层形貌和厚度存在明显差异。Cu和Al表现出较好的耐腐蚀性能,而碳钢和ZF的腐蚀速率较高,Zn材料则在前期表现出较强的抗腐蚀能力。

关键词 电网材料海洋环境锈层腐蚀大数据    
Abstract

The corrosion behavior of five commonly used power grid materials: carbon steel, zinc, galvanized steel, aluminum, and copper in natural environment of a typical coastal area at Zhejiang province was assessed via year-long exposure testing. Meanwhile, electrochemical performance, the surface and cross-sectional morphology and phase composition of the corrosion products were systematically analyzed. Additionally, by integrating four months of online corrosion current monitoring data, the corrosion rates and mechanisms of different materials were explored. The results indicate that the coastal environment significantly affects the corrosion of different materials, with noticeable differences in morphology and thickness of the rust scale. Copper and aluminum exhibited better corrosion resistance, while carbon steel and galvanized steel had higher corrosion rates, and zinc showed strong corrosion resistance in the initial stage.

Key wordspower grid materials    marine environment    rust layer    corrosion big data
收稿日期: 2024-08-28      32134.14.1005.4537.2024.272
ZTFLH:  TG172  
基金资助:国网浙江省电力有限公司科技项目(B311DS230002)
通讯作者: 杨小佳,E-mail:yangxiaojia@ustb.edu.cn,研究方向为基于腐蚀大数据耐蚀新材料的研发
Corresponding author: YANG Xiaojia, E-mail: yangxiaojia@ustb.edu.cn
作者简介: 柳 森,男,1991年生,硕士生
图1  浙江某沿海地区大气暴晒挂片试样
图2  碳钢、ZF、Zn、Cu、Al 5种传感器实物图(从左到右)以及电偶传感器局部放大图
图3  碳钢、Zn、ZF、Al、Cu电偶探针腐蚀时钟图及累积电量统计曲线
图4  沿海变电站环境大数据监测
图5  5种金属经1 a大气暴晒后表面形貌
图6  5种金属经1 a大气暴晒形成的锈层截面形貌
图7  5种金属经1 a大气暴晒后表面的XRD谱
图8  5种金属经1 a大气暴晒后在蒸馏水中的EIS谱
图9  Pearson相关性图
[1] Shen J, Wu K X, He X Y, et al. Evaluation and screening of atmospheric corrosion prediction algorithms of steels in different regions of China [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 939
[1] (沈 坚, 吴柯娴, 何晓宇 等. 我国不同地区钢材大气腐蚀预测算法评估与筛选 [J]. 中国腐蚀与防护学报, 2024, 44: 939)
[2] Wang F Q, Wang Z G, Hai C, et al. Study on corrosion behavior of carbon steel in typical atmospheric environments in Dazhou [J]. Sichuan Electric Power Technol., 2024, 47(2): 89
[2] (王方强, 王志高, 海 潮 等. 碳钢在达州典型大气环境下的腐蚀行为研究 [J]. 四川电力技术, 2024, 47(2): 89)
[3] Fan P C, Li J, Li L, et al. Corrosion and protection of metallic components in power grid equipment [J]. Heilongjiang Electric Power, 2021, 43: 307
[3] (樊平成, 李 军, 李 龙 等. 电网设备金属部件的腐蚀与防护 [J]. 黑龙江电力, 2021, 43: 307)
[4] Zheng G W, Wu G W, Zheng G, et al. Failure analysis of steel structure coatings in a southeast coastal power plant [J]. China Coat., 2024, 39(3): 69
[4] (郑观文, 吴国威, 郑 国 等. 东南沿海电厂钢结构涂层失效分析 [J]. 中国涂料, 2024, 39(3): 69)
[5] Wang J, Zhou X B, Xie Y, et al. Atmospheric corrosion of tin coating on T2 copper in Xiangtan, China [J]. Corros. Commun., 2024, 16: 52
[6] She X M, Peng J, Qiang Y J, et al. Recent advances in protective technologies against copper corrosion [J]. J. Mater. Sci. Technol., 2024, 201: 75
doi: 10.1016/j.jmst.2024.02.060
[7] Becker J, Pellé J, Rioual S, et al. Atmospheric corrosion of silver, copper and nickel exposed to hydrogen sulphide: a multi-analytical investigation approach [J]. Corros. Sci., 2022, 209: 110726
[8] Cheng Z Z. Experimental study on the corrosion resistance of copper slag concrete structures in high-salinity environments [J]. Fujian Build. Mater., 2023, (10): 14
[8] (程珍珍. 高盐环境下铜矿渣混凝土结构抗腐蚀性能试验研究 [J]. 福建建材, 2023, (10): 14)
[9] Yan X H, Rong H S, Fan W J, et al. Effect and simulation of tensile stress on corrosion behavior of 7050 aluminum alloy in a simulated harsh marine environment [J]. Eng. Fail. Anal., 2024, 156: 107843
[10] Wang Y C, Huang G L, Huang H L, et al. High temperature corrosion behavior of ADC12 aluminum alloy in oxalic acid solution [J]. Corros. Sci., 2024, 232: 112028
[11] Qiao D G, Wang S L, Ning P D, et al. Corrosion resistance of zinc-magnesium-aluminium alloy coated steel in marine atmospheric environments [J]. Int. J. Electrochem. Sci., 2024, 19: 100705
[12] Jia L H, Li Y L, Huang L, et al. Research status of pitting corrosion of aluminum alloy [J]. Mater. Prot., 2022, 55(suppl.1) : 77
[12] (荚利宏, 李逸伦, 黄 粒 等. 铝合金点蚀研究现状 [J]. 材料保护, 2022, 55(): 77)
[13] Che Y, Wang Q, Liu R X, et al. Corrosion behavior of hot-dip galvanized steel exposed to sulfur dioxide with moisture condensation [J]. Electroplat. Finish., 2020, 39: 1175
[13] (车 瑶, 王 谦, 刘若溪 等. 凝露条件下热镀锌钢在二氧化硫气体中的腐蚀行为 [J]. 电镀与涂饰, 2020, 39: 1175)
[14] Liu Y, Ooi A, Tada E, et al. Electrochemical monitoring of the degradation of galvanized steel in simulated marine atmosphere [J]. Corros. Sci., 2019, 147: 273
doi: 10.1016/j.corsci.2018.11.013
[15] Zhao Q, Zhang J, Li L M, et al. Study on the atmospheric corrosion of galvanized steel in the anhui province power grid and its influence law [J]. Mater. Prot., 2024, 57(5): 191
[15] (赵 骞, 张 洁, 李乐民 等. 安徽省电网用镀锌钢的大气腐蚀及其影响规律 [J]. 材料保护, 2024, 57(5): 191)
[16] Li Z W, Wu Q H, Zhou Y L, et al. Study on microstructure and electrochemical corrosion behavior of ζ-FeZn13 phase layer in hot-dip galvanized coating [J]. J. Alloy. Compd., 2024, 1003: 175569
[17] Jiang Z H, Chen T Q, Che Z C, et al. Effect of Ca-Mg microalloying on corrosion behavior and corrosion resistance of low alloy steel in the marine atmospheric environment [J]. Corros. Sci., 2024, 234: 112134
[18] Santa A C, Montoya D A, Tamayo J A, et al. Atmospheric corrosion of carbon steel: Results of one-year exposure in an andean tropical atmosphere in Colombia [J]. Heliyon, 2024, 10: e29391
[19] Gao L P, Li Z D, Huang Z Y. Research progress on marine corrosion performance of low alloy steel [J]. Metall. Funct. Mater., 2024, 31(3): 107
[19] (高丽平, 李昭东, 黄贞益. 低合金钢海洋腐蚀性能研究进展 [J]. 金属功能材料, 2024, 31(3): 107)
[20] Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
[20] (王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578)
[21] Vera R, Valverde B, Olave E, et al. Atmospheric corrosion and impact toughness of steels: case study in steels with and without galvanizing, exposed for 3 years in Rapa Nui Island [J]. Heliyon, 2023, 9: e17811
[22] Li B, He J H, Yu S W, et al. Corrosion behavior of galvanized steel in simulated coastal-industrial atmosphere [J]. Mater. Prot., 2022, 55(7): 128
[22] (李 波, 何锦航, 余思伍 等. 镀锌钢在模拟沿海-工业大气中的腐蚀行为 [J]. 材料保护, 2022, 55(7): 128)
[23] Tao J, Wang Z G, Cai W H, et al. Study on corrosion resistance of hot-dip galvanized steel treated with a novel chromium-free passivator [J]. Jiangxi Metall., 2024, 44: 193
[23] (陶 俊, 汪志刚, 蔡伟豪 等. 新型无铬钝化剂处理热浸镀锌钢的耐腐蚀性能研究 [J]. 江西冶金, 2024, 44: 193)
[24] Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
[25] Sun M H, Xu X X, Li J W, et al. The influence of microstructures on the corrosion resistance of Cr-Mo-Sn low alloy steel in a tropical marine atmospheric [J]. Corros. Sci., 2024, 233: 112058
[26] Li G, Evitts R, Boulfiza M. Interactive effects of moisture, chloride, and carbonation on rebar corrosion in mortar [J]. Constr. Build. Mater., 2024, 440: 137440
[27] Gjertsen S, Seiersten M, Palencsar A, et al. The effect of weak acids on active corrosion rate in top-of-line corrosion [J]. Corros. Sci., 2024, 236: 112253
[28] Gejendhiran S, Karpagaraj A, Manivannan S, et al. Experimental study on mechanical, damping and corrosion properties of Inconel 718 hard-faced stainless steel 304 using cold metal transfer [J]. Eng. Fail. Anal., 2024, 156: 107871
[29] Stephanou M, Varughese M. Sequential estimation of Spearman rank correlation using Hermite series estimators [J]. J. Multivar. Anal., 2021, 186: 104783
[1] 方焕杰, 周鹏, 郁健浩, 王永欣, 于波, 蒲吉斌. Ti80合金与船用金属的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[2] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[3] 魏然, 蒋全通, 孙琛, 王伟伟, 段继周, 侯保荣. 镁合金在海洋环境中的腐蚀与防护研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 533-547.
[4] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[5] 张炬焕, 刘静, 彭晶晶, 张弦, 吴开明. Al-Zn-In系牺牲阳极在模拟海洋环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[6] 冯少宇, 周兆辉, 杨兰兰, 乔岩欣, 王金龙, 王福会. 海洋环境下TC4合金的电化学及磨损行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[7] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[8] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[9] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[10] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[11] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[12] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[13] 周梦鑫, 吴军, 樊志彬, 周学杰, 陈昊. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[14] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[15] 石践, 胡学文, 何博, 杨峥, 汪飞, 郭锐. 耐候钢表面稳定化处理及锈层结构研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 856-860.