Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 956-964     CSTR: 32134.14.1005.4537.2024.211      DOI: 10.11902/1005.4537.2024.211
  研究报告 本期目录 | 过刊浏览 |
自源性磁场对Cu大气腐蚀行为的影响
李秋博, 苏一喆, 吴伟(), 张俊喜()
上海电力大学 上海市电力材料防护与新材料重点实验室 上海 200090
Effect of Self-generated Magnetic Field Produced by Electric Current on Atmospheric Corrosion Behavior of Copper
LI Qiubo, SU Yizhe, WU Wei(), ZHANG Junxi()
Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
引用本文:

李秋博, 苏一喆, 吴伟, 张俊喜. 自源性磁场对Cu大气腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
Qiubo LI, Yizhe SU, Wei WU, Junxi ZHANG. Effect of Self-generated Magnetic Field Produced by Electric Current on Atmospheric Corrosion Behavior of Copper[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 956-964.

全文: PDF(14051 KB)   HTML
摘要: 

本文研究了通电工况下自源性磁场对海洋大气环境中Cu大气腐蚀行为的影响。采用薄液膜体系电化学测量技术和模拟腐蚀时效研究了自源性磁场下Cu的大气腐蚀行为特征,采用扫描电镜观察了腐蚀产物的表面形貌,采用X射线衍射和X射线光电子能谱技术对腐蚀产物的成分进行了表征。结果表明,随着自源性磁场强度的升高,Cu的阴极过程与阳极过程均加快,共同导致了其腐蚀速率的上升;在腐蚀时效中随着自源性磁场强度的升高,Cu表面腐蚀产物组成发生变化,对基体后续进一步腐蚀的抑制能力减弱,且表面出现点蚀;同时发现铜表面的腐蚀程度与电流方向相关,电流流入一端腐蚀程度高于电流流出一端。文中进一步分析了自源性磁场对Cu大气腐蚀的影响机理。

关键词 Cu薄液膜大气腐蚀自源性磁场    
Abstract

The effect of self-generated magnetic field produced by electric current on the corrosion behavior of Cu in simulated marine atmospheric environments was studied via a novel lab-made electrochemical test set, which consists of that a current-carrying copper conductor is covered with T2 pure Cu foil, and a thin electrolyte layer (TEL) on top of the Cu foil. The surface morphology and composition of the corrosion products were characterized by using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy techniques. The results showed that with the increasing intensity of the self-generated magnetic field, both the cathodic and anodic processes of the copper were accelerated, jointly leading to an increase in the corrosion rate. During long term corrosion exposure, the composition of the corrosion products on the copper surface changes with the increasing intensity of the self-generated magnetic field, while weakening its protective ability for the subsequent corrosion of Cu substrate, thus, pitting corrosion occurs on the Cu surface. At the same time, it is found that the corrosion degree of the Cu surface is closely related to the direction of the electric current and locations of the test piece, namely where the current input the corrosion degree is higher than that the current output. Herewith, the influence mechanism of the self-generated magnetic field on the atmospheric corrosion of Cu is further discussed.

Key wordscopper    thin electrolyte layer    atmospheric corrosion    self-generated magnetic field
收稿日期: 2024-07-15      32134.14.1005.4537.2024.211
ZTFLH:  TG172  
基金资助:国家自然科学基金(52171074)
通讯作者: 吴伟,E-mail:wuweicorr@shiep.edu.cn,研究方向为电力材料腐蚀及环境断裂;
张俊喜,E-mail:zhangjunxi@shiep.edu.cn,研究方向为输变电工况下的金属腐蚀与防护
Corresponding author: WU Wei, E-mail: wuweicorr@shiep.edu.cn;
ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn
作者简介: 李秋博,男,1995年生,硕士生
图1  实验所用薄液膜电化学测量装置及工作电极横截面示意图
图2  实际工况与模拟工况下铜表面磁场分布的对比
图3  铜箔在不同薄液膜厚度条件下相对开路+50 mV时的EIS曲线
图4  薄液膜厚度为40 μm时不同自源性磁场水平下铜箔的弱极化曲线和拟合的电化学参数
图5  铜箔在TEL和不同自源性磁场水平条件下暴露3 d后的表面形貌
图6  铜箔在 TEL 和不同自源性磁场水平条件下暴露7 d后的表面形貌
图7  铜箔在不同自源性磁场强度下暴露7 d后表面的XRD谱
图8  铜箔在不同自源性磁场强度下暴露7 d后表面腐蚀产物膜的Cu 2p3/2 XPS图谱
图9  铜箔在不同自源性磁场强度下暴露7 d后表面腐蚀产物膜的O 1s的XPS精细谱
图10  薄液膜条件下腐蚀7 d后铜表面腐蚀膜中不同价态Cu和O所占比例
图11  自源性磁场作用下铜箔表面的CuCl2-和O2分布示意图
[1] Zhou H, You S J, Wang S L. Corrosion behavior and corrosion inhibitor for copper artifacts in CO2 environment [J]. Chin. J. Corros. Prot., 2023, 43: 1049
[1] (周 浩, 尤世界, 王胜利. 铜质文物在CO2环境中的腐蚀行为及缓蚀剂研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1049)
[2] Liao X N, Cao F H, Zheng L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer [J]. Corros. Sci., 2011, 53: 3289
[3] Zhang Y F, Yuan X G, Huang H J, et al. Corrosion behavior of Cu-Al laminated board in neutral salt fog environment [J]. Chin. J. Corros. Prot., 2021, 41: 241
[3] (张艺凡, 袁晓光, 黄宏军 等. 铜铝层状复合板中性盐雾腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 241)
doi: 10.11902/1005.4537.2020.217
[4] Lv W Y, Zheng K Q, Wang Y B, et al. Influence of electric current on the corrosion behavior of Cu for the electric contact in the isolation switch [J]. Mater. Corros., 2019, 70: 1900
[5] Cheng Y L, Zuo X J, Yuan X G, et al. Influence of DC current on corrosion behaviour of copper-aluminium composite plates [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1142
[6] Gao Y, Li Q B, Wu W, et al. Atmospheric corrosion acceleration effect on commercial aluminum alloys in current-carrying condition [J]. Anti-Corros. Methods Mater., 2024, 71: 114
[7] Zhu L Y, Chen J Q, Zhang X X, et al. Research progress of effect of magnetic field on metal corrosion [J]. Chin. J. Corros. Prot., 2024, 44: 1117
[7] (朱立洋, 陈俊全, 张欣欣 等. 磁场对金属腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1117)
doi: 10.11902/1005.4537.2023.381
[8] Lv Z P, Chen J J, Xiao Q, et al. Effects of magnetic fields on anodic dissolution of copper in solutions of various acidities [J]. Corros. Prot., 2014, 35: 1187
[8] (吕战鹏, 陈俊劼, 肖 茜 等. 磁场对铜在几种酸性溶液中阳极溶解的影响 [J]. 腐蚀与防护, 2014, 35: 1187)
[9] Lu Z P, Shoji T, Yang W. Anomalous surface morphology of iron generated after anodic dissolution under magnetic fields [J]. Corros. Sci., 2010, 52: 2680
[10] Li X H, Tao Y Q, Huang H, et al. Effect of magnetic field on anodic process of X70 pipeline steel in sodium carbonate solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 765
[10] (李晓徽, 陶轶琦, 黄 浩 等. 磁场对X70管线钢在碳酸钠溶液中阳极过程的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 765)
doi: 10.11902/1005.4537.2023.217
[11] Schott F W. On the biot-savart law [J]. IEEE Trans. Edu., 1982, 25: 39
[12] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: The Kelvin force. A mini-review [J]. Electrochem. Commun., 2014, 42: 42
[13] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: The Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
[14] Sueptitz R, Tschulik K, Uhlemann M, et al. Effect of magnetization state on the corrosion behaviour of NdFeB permanent magnets [J]. Corros. Sci., 2011, 53: 2843
[15] Luo S Z, Elouarzaki K, Xu Z J. Electrochemistry in magnetic fields [J]. Angew. Chem.-Int. Edit., 2022, 61: e202203564
[16] Nishikata A, Ichihara Y, Tsuru T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J]. Corros. Sci., 1995, 37: 897
[17] Cruz R P V, Nishikata A, Tsuru T. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment [J]. Corros. Sci., 1996, 38: 1397
[18] Huang H L, Dong Z H, Chen Z Y, et al. The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1230
[19] Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1700
[20] Cao C N. Estimation of electrochemical kinetic parameters of corrosion processes by weak polarization curve fitting [J]. J. Chin. Soc. Corros. Prot., 1985, 5: 155
[20] (曹楚南. 由弱极化曲线拟合估算腐蚀过程的电化学动力学参数 [J]. 中国腐蚀与防护学报, 1985, 5: 155)
[21] Ren P Y, Li R X, Wu X. Corrosion behavior of copper materials in marine atmosphere under action of magnetic field [J]. Corros. Prot., 2019, 40: 419
[21] (任佩云, 李瑞雪, 吴 旭. 磁场作用下铜材在海洋大气中的腐蚀行为 [J]. 腐蚀与防护, 2019, 40: 419)
[22] Vernack E, Zanna S, Seyeux A, et al. ToF-SIMS, XPS and DFT study of the adsorption of 2-mercaptobenzothiazole on copper in neutral aqueous solution and corrosion protection in chloride solution [J]. Corros. Sci., 2023, 210: 110854
[23] McIntyre N S, Cook M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper [J]. Anal. Chem., 1975, 47: 2208
[24] Klein J C, Li C P, Hercules D M, et al. Decomposition of copper compounds in X-ray photoelectron spectrometers [J]. Appl. Spectrosc., 1984, 38: 729
[25] Huang J B, Wu X Q, Han E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
[26] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
[27] Van Ingelgem Y, Hubin A, Vereecken J. Investigation of the first stages of the localized corrosion of pure copper combining EIS, FE-SEM and FE-AES [J]. Electrochim. Acta, 2007, 52: 7642
[28] Faita G, Fiori G, Salvadore D. Copper behaviour in acid and alkaline brines—I kinetics of anodic dissolution in 0.5M NaCl and free-corrosion rates in the presence of oxygen [J]. Corros. Sci., 1975, 15: 383
[29] Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution [J]. J. Mater. Sci. Technol., 2010, 26: 355
[30] Wei X, Dong C F, Yi P, et al. Electrochemical measurements and atomistic simulations of Cl--induced passivity breakdown on a Cu2O film [J]. Corros. Sci., 2018, 136: 119
[1] 彭文山, 辛永磊, 温杰平, 侯健, 孙明先. 极地冰覆盖下变温和恒温对高强钢腐蚀影响研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[2] 王康, 姜建军, 杨丽景, 宋振纶. 烧结NdFeB表面HEDP-焦磷酸钾体系电镀铜工艺及性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 687-697.
[3] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[4] 张昊, 陈俊航, 胡为峰, 张新, 董超芳, 肖葵. 大气腐蚀监测Cu-Zn探针环境因素敏感性和腐蚀影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1339-1344.
[5] 刘超, 代文贺, 王克俊, 陈增耀, 安雁军, 刘智勇. Cu含量对Q420钢在货油舱内底板环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 927-938.
[6] 张佳伟, 黄峰, 汪涵敏, 郎丰军, 袁玮, 刘静. 耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[7] 樊志彬, 高智悦, 宗立君, 吴亚平, 李辛庚, 姜波, 杜宝帅. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[8] 李婷玉, 魏洁, 陈楠, 万晔, 董俊华. 用于大气环境的电化学传感器的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[9] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[10] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[11] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[12] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[13] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[14] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[15] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.