|
|
聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的分子动力学模拟研究 |
夏渊1, 廉兵杰1, 程佳2, 李文2( ) |
1 中海油常州涂料化工研究院有限公司 常州 213016 2 中国海洋大学材料科学与工程学院 青岛 266100 |
|
Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study |
XIA Yuan1, LIAN Bingjie1, CHENG Jia2, LI Wen2( ) |
1 CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd., Changzhou 213016, China 2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
引用本文:
夏渊, 廉兵杰, 程佳, 李文. 聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 975-982.
Yuan XIA,
Bingjie LIAN,
Jia CHENG,
Wen LI.
Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 975-982.
[1] |
Chen J N, Jiang Y S, Xiao F, et al. Research progress of anti-corrosion for polyurea coatings in marine environment [J]. Mater. Prot., 2022, 55: 129
|
[1] |
(陈菊娜, 蒋以山, 肖 锋 等. 海洋环境中聚脲涂层防腐研究进展 [J]. 材料保护, 2022, 55: 129)
|
[2] |
Liu Z Y, Song W, Cheng Y C. Design and application of polyurea anti-corrosion coating for concrete surface of flue gas desulfurization devices [J]. Corros. Prot., 2010, 31: 380
|
[2] |
(刘宗瑜, 宋 蔚, 程玉春. 烟气脱硫装置混凝土表面聚脲防腐蚀涂层设计与应用 [J]. 腐蚀与防护, 2010, 31: 380)
|
[3] |
Shojaei B, Najafi M, Yazdanbakhsh A, et al. A review on the applications of polyurea in the construction industry [J]. Polym. Advan. Technol., 2021, 32: 2797
|
[4] |
Shi F. Study on preparation of polyaspartic polyurea and its property of anti-cavitation [D]. Beijing: China Academy of Machinery Science & Technology, 2011
|
[4] |
(史 锋. 聚天冬氨酸酯聚脲涂层的制备及抗空蚀性能的研究 [D]. 北京: 机械科学研究总院, 2011)
|
[5] |
Meng Q S, Wang P, Yu Y, et al. Polyaspartic polyurea/graphene nanocomposites for multifunctionality: self-healing, mechanical resilience, electrical and thermal conductivities, and resistance to corrosion and impact [J]. Thin Wall. Struct., 2023, 189: 110853
|
[6] |
Lian B J, Tu Q, Wang H H, et al. Development and application of solvent-free DTM polyaspartic ester based coatings [J]. Coat. Prot., 2022, 43: 1
|
[6] |
(廉兵杰, 涂 强, 王焕焕 等. 无溶剂底面合一聚天冬氨酸酯聚脲涂料的研制及应用研究 [J]. 涂层与防护, 2022, 43: 1)
|
[7] |
Liu J R, Yu K J, Qian K, et al. Research progress of polyaspartate polyurea [J]. Paint Coat. Ind., 2022, 52: 77
|
[7] |
(刘俊仁, 俞科静, 钱 坤 等. 聚天冬氨酸酯聚脲的研究进展 [J]. 涂料工业, 2022, 52: 77)
doi: 10.12020/j.issn.0253-4312.2022.6.77
|
[8] |
Natour S, Gajdošová V, Morávková Z, et al. Aspartate-based polyurea coatings: ambient cure process and inevitable transformation of urea groups into hydantoin cycles in polyurea networks and their impact on film properties [J]. Prog. Org. Coat., 2024, 192: 108449
|
[9] |
Van Gunsteren W F, Dolenc J, Mark A E. Molecular simulation as an aid to experimentalists [J]. Curr. Opin. Struc. Biol., 2008, 18: 149
doi: 10.1016/j.sbi.2007.12.007
pmid: 18280138
|
[10] |
Sheng G W, Qi J, Lu P, et al. Molecular simulation on oxidation mechanism of FeCr alloy in high temperature steam environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 159
|
[10] |
(绳淦文, 祁 晶, 卢 平 等. 高温蒸气环境中FeCr合金氧化机理的分子模拟研究 [J]. 中国腐蚀与防护学报, 2023, 43: 159)
doi: 10.11902/1005.4537.2022.074
|
[11] |
Lbadaoui-Darvas M, Garberoglio G, Karadima K S, et al. Molecular simulations of interfacial systems: challenges, applications and future perspectives [J]. Mol. Simulat., 2023, 49: 1229
doi: 10.1080/08927022.2021.1980215
|
[12] |
Düren T, Bae Y S, Snurr R Q. Using molecular simulation to characterise metal-organic frameworks for adsorption applications [J]. Chem. Soc. Rev., 2009, 38: 1237
doi: 10.1039/b803498m
pmid: 19384435
|
[13] |
Chen Z, Yuwen P, Wen S H, et al. First principles study on effect of B addition on oxidation resistance of MoSi2 intermetallic compound [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 224
|
[13] |
(陈 郑, 宇文佩, 温思涵 等. B添加对MoSi2金属间化合物抗氧化性能影响的第一性原理研究 [J]. 中国腐蚀与防护学报, 2025, 45: 224)
|
[14] |
Jian W, Lau D. Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level [J]. Compos. Sci. Technol., 2020, 191: 108076
|
[15] |
Sun W S, Yu S R, Gao S, et al. Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411
|
[15] |
(孙伟松, 于思荣, 高 嵩 等. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟 [J]. 中国腐蚀与防护学报, 2021, 41: 411)
doi: 10.11902/1005.4537.2020.227
|
[16] |
Mansourian-Tabaei M, Asiaee A, Hutton-Prager B, et al. Thermal barrier coatings for cellulosic substrates: a statistically designed molecular dynamics study of the coating formulation effects on thermal conductivity [J]. Appl. Surf. Sci., 2022, 587: 152879
|
[17] |
Cheng X Y, Ye H, Guo C H, et al. Molecular dynamics simulation of diffusion behavior of benzotriazole and sodium benzoate in volatile corrosion inhibitor film [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1323
|
[17] |
(程学雨, 叶 桓, 郭程皓 等. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1323)
doi: 10.11902/1005.4537.2023.339
|
[18] |
Farzi N, Ebrahim M. Mechanical properties and glass transition temperature of metal-organic framework-filled epoxy resin: a molecular dynamics study [J]. Mater. Chem. Phys., 2024, 314: 128874
|
[19] |
Grujicic M, Pandurangan B, Bell W C, et al. Molecular-level simulations of shock generation and propagation in polyurea [J]. Mater. Sci. Eng., 2011, 528A: 3799
|
[20] |
Amani M, Amjad-Iranagh S, Golzar K, et al. Study of nanostructure characterizations and gas separation properties of poly (urethane-urea)s membranes by molecular dynamics simulation [J]. J. Membrane. Sci., 2014, 462: 28
|
[21] |
Liu M H, Oswald J. Coarse-grained molecular modeling of the microphase structure of polyurea elastomer [J]. Polymer, 2019, 176: 1
|
[22] |
Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. J. Phys. Chem., 1998, 102B: 7338
|
[23] |
Nosé S. A unified formulation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984, 81: 511
|
[24] |
Berendsen H J C, Postma J P M, Van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81: 3684
|
[25] |
Wang B, Ren W W, Wang W F. Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials [J]. Dev. Appl. Mater., 2016, 31: 1
|
[25] |
(王 兵, 任伟伟, 王雯霏. 静压力下粘弹性阻尼材料自由体积分数的分子模拟研究 [J]. 材料开发与应用, 2016, 31: 1)
|
[26] |
Ernst D, Köhler J. Measuring a diffusion coefficient by single-particle tracking: statistical analysis of experimental mean squared displacement curves [J]. Phys. Chem. Chem. Phys., 2013, 15: 845
doi: 10.1039/c2cp43433d
pmid: 23202416
|
[27] |
Zhang J, Li W, Yan Y G, et al. Molecular insight into nanoscale water films dewetting on modified silica surfaces [J]. Phys. Chem. Chem. Phys., 2015, 17: 451
doi: 10.1039/c4cp04554h
pmid: 25408287
|
[28] |
Martı J. Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations [J]. J. Chem. Phys., 1999, 110: 6876
|
[29] |
Li W, Zhang L, Zhang M T, et al. Structures of graphene-reinforced epoxy coatings and the dynamic diffusion of guest water: a molecular dynamics study [J]. Ind. Eng. Chem. Res., 2020, 59: 20749
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|