Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 975-982     CSTR: 32134.14.1005.4537.2024.326      DOI: 10.11902/1005.4537.2024.326
  研究报告 本期目录 | 过刊浏览 |
聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的分子动力学模拟研究
夏渊1, 廉兵杰1, 程佳2, 李文2()
1 中海油常州涂料化工研究院有限公司 常州 213016
2 中国海洋大学材料科学与工程学院 青岛 266100
Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study
XIA Yuan1, LIAN Bingjie1, CHENG Jia2, LI Wen2()
1 CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd., Changzhou 213016, China
2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

夏渊, 廉兵杰, 程佳, 李文. 聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 975-982.
Yuan XIA, Bingjie LIAN, Jia CHENG, Wen LI. Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 975-982.

全文: PDF(5080 KB)   HTML
摘要: 

采用分子动力学模拟方法研究了聚天冬氨酸酯聚脲胺基组分的环状平面分子结构和线型分子结构对涂层微观结构及腐蚀介质扩散行为的影响。结果表明:相比于线型分子结构,环状平面分子结构具有较大的空间位阻,体系内自由体积较大,密度较小;分子结构支化程度的增加可进一步增加涂层的自由体积,导致体系致密性下降;分子链段长度的增大对体系致密性的影响较小;水分子可与聚脲分子形成氢键,并倾向于以聚集态的形式存在于涂层内部。从涂层耐蚀性的角度来说,线型分子结构更有利于形成致密的涂层结构,增强涂层耐蚀性。本文通过分子模拟方法开展的涂层结构与性能关联机制研究,为涂料配方设计提供了分子模拟筛选新手段。

关键词 聚天冬氨酸酯聚脲分子结构腐蚀介质分子动力学模拟    
Abstract

Herein, the influence of cyclic planar molecular structure and linear molecular structure of polyaspartic ester polyurea amino component on the microstructure of polyurea coatings and the diffusion behavior of corrosive media within the coating was studied by means of molecular dynamics simulation. The results indicate that compared with linear molecular structures, cyclic planar molecular structures have greater steric hindrance, resulting larger free volume and lower density of the polyurea system; The increase in molecular branching can further increase the free volume of the coating, leading to a decrease in the density of the system; The increase in molecular chain segment length has a relatively small impact on the compactness of the system; Water molecules can form hydrogen bonds with polyurea molecules and tend to exist in an aggregated state inside the coating. Regarding the corrosion resistance of the formed coating, linear molecular structures are more conducive to formation of dense coating structures and enhancement of coating corrosion resistance. Finally, this article conducts a study on the correlation mechanism between coating structure and performance through molecular simulation methods, providing a new means of molecular simulation screening for coating formulation design.

Key wordspolyaspartic ester polyurea    molecular structure    corrosive media    molecular dynamics simulation
收稿日期: 2024-10-09      32134.14.1005.4537.2024.326
ZTFLH:  TE58  
基金资助:山东省高等学校青年创新团队发展计划(2023KJ033);青岛市海洋产业关键技术攻关项目(24-1-3-hygg-16-hy)
通讯作者: 李 文,E-mail:liwen3710@ouc.edu.cn,研究方向为海洋功能防护材料
Corresponding author: LI Wen, E-mail: liwen3710@ouc.edu.cn
作者简介: 夏 渊,男,1984年生,硕士生
图1  马来酸二乙酯与聚醚胺反应制备聚天冬氨酸酯树脂及该树脂与缩二脲异氰酸酯反应制备聚天冬氨酸酯聚脲反应原理图,3,3'-二甲基-4,4-二氨基二环己基甲烷,4,4'-二氨基二环己基甲烷分子结构及1,6-己二胺分子结构
图2  A1~A4树脂分子模拟模型,及A1树脂与缩二脲异氰酸酯反应生成聚脲分子模型和聚脲涂层体系模拟模型
图3  聚脲体系在不同聚合程度下的密度随模拟时间的演变
图4  A1聚脲6DT涂层自由体积(为了更清晰的观察自由体积形状,体系内的树脂分子以线的形式显示)
图5  4DT、6DT和8DT的四种树脂体系的FFV及其对比图
图6  水分子在6DT A1~A4聚脲体系内以及在不同分子链段长度A4聚脲体系内的MSD曲线
图7  A4聚脲分子结构中双键氧原子与水分子中氢原子间的径向分布函数,以及水分子分布及其与聚脲分子之间的氢键结构
[1] Chen J N, Jiang Y S, Xiao F, et al. Research progress of anti-corrosion for polyurea coatings in marine environment [J]. Mater. Prot., 2022, 55: 129
[1] (陈菊娜, 蒋以山, 肖 锋 等. 海洋环境中聚脲涂层防腐研究进展 [J]. 材料保护, 2022, 55: 129)
[2] Liu Z Y, Song W, Cheng Y C. Design and application of polyurea anti-corrosion coating for concrete surface of flue gas desulfurization devices [J]. Corros. Prot., 2010, 31: 380
[2] (刘宗瑜, 宋 蔚, 程玉春. 烟气脱硫装置混凝土表面聚脲防腐蚀涂层设计与应用 [J]. 腐蚀与防护, 2010, 31: 380)
[3] Shojaei B, Najafi M, Yazdanbakhsh A, et al. A review on the applications of polyurea in the construction industry [J]. Polym. Advan. Technol., 2021, 32: 2797
[4] Shi F. Study on preparation of polyaspartic polyurea and its property of anti-cavitation [D]. Beijing: China Academy of Machinery Science & Technology, 2011
[4] (史 锋. 聚天冬氨酸酯聚脲涂层的制备及抗空蚀性能的研究 [D]. 北京: 机械科学研究总院, 2011)
[5] Meng Q S, Wang P, Yu Y, et al. Polyaspartic polyurea/graphene nanocomposites for multifunctionality: self-healing, mechanical resilience, electrical and thermal conductivities, and resistance to corrosion and impact [J]. Thin Wall. Struct., 2023, 189: 110853
[6] Lian B J, Tu Q, Wang H H, et al. Development and application of solvent-free DTM polyaspartic ester based coatings [J]. Coat. Prot., 2022, 43: 1
[6] (廉兵杰, 涂 强, 王焕焕 等. 无溶剂底面合一聚天冬氨酸酯聚脲涂料的研制及应用研究 [J]. 涂层与防护, 2022, 43: 1)
[7] Liu J R, Yu K J, Qian K, et al. Research progress of polyaspartate polyurea [J]. Paint Coat. Ind., 2022, 52: 77
[7] (刘俊仁, 俞科静, 钱 坤 等. 聚天冬氨酸酯聚脲的研究进展 [J]. 涂料工业, 2022, 52: 77)
doi: 10.12020/j.issn.0253-4312.2022.6.77
[8] Natour S, Gajdošová V, Morávková Z, et al. Aspartate-based polyurea coatings: ambient cure process and inevitable transformation of urea groups into hydantoin cycles in polyurea networks and their impact on film properties [J]. Prog. Org. Coat., 2024, 192: 108449
[9] Van Gunsteren W F, Dolenc J, Mark A E. Molecular simulation as an aid to experimentalists [J]. Curr. Opin. Struc. Biol., 2008, 18: 149
doi: 10.1016/j.sbi.2007.12.007 pmid: 18280138
[10] Sheng G W, Qi J, Lu P, et al. Molecular simulation on oxidation mechanism of FeCr alloy in high temperature steam environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 159
[10] (绳淦文, 祁 晶, 卢 平 等. 高温蒸气环境中FeCr合金氧化机理的分子模拟研究 [J]. 中国腐蚀与防护学报, 2023, 43: 159)
doi: 10.11902/1005.4537.2022.074
[11] Lbadaoui-Darvas M, Garberoglio G, Karadima K S, et al. Molecular simulations of interfacial systems: challenges, applications and future perspectives [J]. Mol. Simulat., 2023, 49: 1229
doi: 10.1080/08927022.2021.1980215
[12] Düren T, Bae Y S, Snurr R Q. Using molecular simulation to characterise metal-organic frameworks for adsorption applications [J]. Chem. Soc. Rev., 2009, 38: 1237
doi: 10.1039/b803498m pmid: 19384435
[13] Chen Z, Yuwen P, Wen S H, et al. First principles study on effect of B addition on oxidation resistance of MoSi2 intermetallic compound [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 224
[13] (陈 郑, 宇文佩, 温思涵 等. B添加对MoSi2金属间化合物抗氧化性能影响的第一性原理研究 [J]. 中国腐蚀与防护学报, 2025, 45: 224)
[14] Jian W, Lau D. Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level [J]. Compos. Sci. Technol., 2020, 191: 108076
[15] Sun W S, Yu S R, Gao S, et al. Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411
[15] (孙伟松, 于思荣, 高 嵩 等. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟 [J]. 中国腐蚀与防护学报, 2021, 41: 411)
doi: 10.11902/1005.4537.2020.227
[16] Mansourian-Tabaei M, Asiaee A, Hutton-Prager B, et al. Thermal barrier coatings for cellulosic substrates: a statistically designed molecular dynamics study of the coating formulation effects on thermal conductivity [J]. Appl. Surf. Sci., 2022, 587: 152879
[17] Cheng X Y, Ye H, Guo C H, et al. Molecular dynamics simulation of diffusion behavior of benzotriazole and sodium benzoate in volatile corrosion inhibitor film [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1323
[17] (程学雨, 叶 桓, 郭程皓 等. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1323)
doi: 10.11902/1005.4537.2023.339
[18] Farzi N, Ebrahim M. Mechanical properties and glass transition temperature of metal-organic framework-filled epoxy resin: a molecular dynamics study [J]. Mater. Chem. Phys., 2024, 314: 128874
[19] Grujicic M, Pandurangan B, Bell W C, et al. Molecular-level simulations of shock generation and propagation in polyurea [J]. Mater. Sci. Eng., 2011, 528A: 3799
[20] Amani M, Amjad-Iranagh S, Golzar K, et al. Study of nanostructure characterizations and gas separation properties of poly (urethane-urea)s membranes by molecular dynamics simulation [J]. J. Membrane. Sci., 2014, 462: 28
[21] Liu M H, Oswald J. Coarse-grained molecular modeling of the microphase structure of polyurea elastomer [J]. Polymer, 2019, 176: 1
[22] Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. J. Phys. Chem., 1998, 102B: 7338
[23] Nosé S. A unified formulation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984, 81: 511
[24] Berendsen H J C, Postma J P M, Van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81: 3684
[25] Wang B, Ren W W, Wang W F. Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials [J]. Dev. Appl. Mater., 2016, 31: 1
[25] (王 兵, 任伟伟, 王雯霏. 静压力下粘弹性阻尼材料自由体积分数的分子模拟研究 [J]. 材料开发与应用, 2016, 31: 1)
[26] Ernst D, Köhler J. Measuring a diffusion coefficient by single-particle tracking: statistical analysis of experimental mean squared displacement curves [J]. Phys. Chem. Chem. Phys., 2013, 15: 845
doi: 10.1039/c2cp43433d pmid: 23202416
[27] Zhang J, Li W, Yan Y G, et al. Molecular insight into nanoscale water films dewetting on modified silica surfaces [J]. Phys. Chem. Chem. Phys., 2015, 17: 451
doi: 10.1039/c4cp04554h pmid: 25408287
[28] Martı J. Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations [J]. J. Chem. Phys., 1999, 110: 6876
[29] Li W, Zhang L, Zhang M T, et al. Structures of graphene-reinforced epoxy coatings and the dynamic diffusion of guest water: a molecular dynamics study [J]. Ind. Eng. Chem. Res., 2020, 59: 20749
[1] 董楠, 秦慰蓉, 韩培德. SCl表面吸附及其对 γ-FeM(111)(M = CrNiMnMoCuCe)腐蚀的理论研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
[2] 程学雨, 叶桓, 郭程皓, 卢立新, 李伟哲. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[3] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[4] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[8] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[9] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[10] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[11] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[12] 蔡剑, 刘道新, 叶作彦, 张晓化, 何宇廷, 崔腾飞. 腐蚀与交变载荷循环作用对2A12-T4铝合金疲劳寿命的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 61-68.
[13] 刘洁, 刘峥, 刘进, 谢思维. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101-111.
[14] 吴刚,耿玉凤,贾晓林,孙霜青,胡松青. 异恶唑衍生物缓蚀剂缓蚀性能的理论评价[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
[15] 刘月学,刘烈炜,董猛,张大同. 缓蚀剂分子结构与抗硫性能及其缓蚀机理研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 151-156.