Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 983-994     CSTR: 32134.14.1005.4537.2024.294      DOI: 10.11902/1005.4537.2024.294
  研究报告 本期目录 | 过刊浏览 |
热处理工艺对Al0.5CoCrFeNi高熵合金在不同介质下腐蚀行为及力学性能的影响
段敬民, 董勇(), 缪东美, 杨玉婧, 毛凌波, 章争荣
广东工业大学材料与能源学院 广州 510006
Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment
DUAN Jingmin, DONG Yong(), MIAO Dongmei, YANG Yujing, MAO Lingbo, ZHANG Zhengrong
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
引用本文:

段敬民, 董勇, 缪东美, 杨玉婧, 毛凌波, 章争荣. 热处理工艺对Al0.5CoCrFeNi高熵合金在不同介质下腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
Jingmin DUAN, Yong DONG, Dongmei MIAO, Yujing YANG, Lingbo MAO, Zhengrong ZHANG. Corrosion Behavior in Different Media and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Heat Treatment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 983-994.

全文: PDF(22739 KB)   HTML
摘要: 

采用真空中频感应熔炼炉熔炼出Al0.5CoCrFeNi高熵合金,铸态合金均匀化处理后轧制变形,对轧制态合金分别在800、1000、1200 ℃下进行热处理。利用XRD、SEM、EDS、AFM、万能试验机和电化学腐蚀实验对铸态和轧制后不同温度热处理态合金的微观组织、力学性能以及在0.5 mol/L H2SO4溶液、0.5 mol/L NaOH溶液、3.5% (质量分数) NaCl溶液中的腐蚀行为进行了研究。组织分析表明,铸态合金经过轧制和热处理后,B2相基体内部细絮状fcc相全部溶解,且fcc相基体有针状B2相析出。力学分析表明,针状B2相的析出使得合金的屈服强度和硬度得到了提高。铸态合金经过轧制和热处理后,B2相基体与细絮状fcc相的电位差消除,但与fcc相基体的电位差增大,并随着热处理温度的升高而逐渐减小。电化学腐蚀试验结果表明,在0.5 mol/L H2SO4溶液中,轧制后不同温度热处理态合金的腐蚀性能与B2相中的Cr含量呈线性关系;在0.5 mol/L NaOH 溶液中,铸态合金和轧制后1000 ℃热处理态合金表现出优异的耐蚀性;在3.5%NaCl溶液中,轧制后1200 ℃热处理态合金的耐蚀性最好。

关键词 高熵合金细絮状fcc相针状B2相腐蚀行为    
Abstract

The Al0.5CoCrFeNi high-entropy alloy was smelted by vacuum medium frequency induction melting, followed by homogenization heat-treatment and cold rolling with 40% reduction, and then post-heat treatment at 800, 1000 and 1200 ℃ respectively. The microstructure and mechanical properties, as well as the corrosion behavior in solutions of 0.5 mol/L H2SO4, 0.5 mol/L NaOH and 3.5%NaCl of as the cast alloy and the rolled + post heat-treated alloys were studied by XRD, SEM, EDS, AFM, universal testing machine and electrochemical corrosion test. The microstructure analysis shows that the as-cast high entropy alloy has a typical dendrite structure composed of fcc-phase and bcc-phase (B2) with precipitates of flocculent structure-like fine fcc-phase within the B2-phase, however after rolling+heat treatment, the fine fcc-phase within the B2 phase is completely dissolved, while certain amount of acicular B2-phase is precipitated within the fcc-phase. Mechanical analysis shows that the precipitation of the hard and brittle acicular B2-phase increases the yield strength and hardness of the alloy. After rolling + heat treatment, the potential difference within the B2 phase is eliminated, but the potential difference between B2-phase and fcc-phase is increased, nevertheless, which gradually decreases with the increase of heat treatment temperature. The electrochemical corrosion test results show that in 0.5 mol/L H2SO4 solution, the corrosion properties of the alloy at different temperatures are linearly related to the Cr content in B2-phase. In 0.5 mol/L NaOH solution, the as-cast alloy and rolled + 1000 ℃ heat treated alloy showed excellent corrosion resistance. In contrast, the rolled + 1200 ℃ heat treated alloy has the best corrosion resistance in 3.5%NaCl solution.

Key wordshigh-entropy alloy    flocculent fcc phase    needle-like B2 phase    corrosion behavior
收稿日期: 2024-09-11      32134.14.1005.4537.2024.294
ZTFLH:  TG174  
基金资助:国家自然科学基金(51801029);广东省自然科学基金(2022A0505050052);广东省自然科学基金(2022A1515012591)
通讯作者: 董勇,E-mail:dongyong5205@163.com,研究方向为高熵合金及先进金属材料
Corresponding author: DONG Yong, E-mail: dongyong5205@163.com
作者简介: 段敬民,男,1999年生,硕士生
图1  拉伸试样尺寸
图2  铸态和轧制后不同温度热处理态合金的XRD图谱以及fcc和bcc (B2)相的体积分数
图3  铸态和轧制后不同温度热处理态合金的BSE和EDS图谱
Alloys with heat treatmentRegionsAlCoCrFeNi
As-castA14.0619.2221.6317.6127.48
B11.4621.1321.9821.0624.37
800 ℃A31.7716.337.2011.4033.30
B8.1223.0423.5423.8221.48
C18.3419.8614.9718.0728.76
1000 ℃A32.7815.516.4910.6634.56
B6.2824.0125.1025.0119.60
C22.7318.7615.1516.8526.51
1200 ℃A30.6116.597.3211.7733.71
B8.5323.3323.2422.7922.11
C28.5911.0413.8217.2429.31
表1  BSE-EDS分析铸态和轧制后不同温度热处理态合金不同区域的化学组成 (atomic fraction / %)
图4  铸态和轧制后不同温度热处理态合金的拉伸曲线和硬度
Alloys with heat treatmentYield strength / MPaFracture strength / MPaFracture strain / %Hardness (HV)
As-cast42072153.9202.06
800 ℃1081120910.8392.53
1000 ℃56199436.9262.23
1200 ℃41188845.8231.37
表2  铸态和轧制后不同温度热处理态合金的力学性能
图5  铸态和轧制后不同温度热处理态合金的拉伸断口形貌
图6  铸态合金的SKPFM形貌图和Volta电位图
图7  轧制后不同温度热处理态合金的SKPFM形貌图和Volta电位图
图8  铸态和轧制后不同温度热处理态合金在0.5 mol/L H2SO4溶液中动电位极化曲线
AlloysEcorr / VIcorr / μA·cm-2Rs / Ω·cm2CPE1 / 10-5 Ω-1·cm-2·s nn1R1 / kΩ·cm2Σ λ2
As-cast-0.79128.444.739.400.88323.202.97 × 10-4
800 ℃-0.7956.554.689.000.89284.001.62 × 10-4
1000 ℃-0.8091.104.669.920.88270.501.47 × 10-4
1200 ℃-0.7947.685.139.610.87287.701.22 × 10-4
表3  铸态和轧制后不同温度热处理态合金在0.5 mol/L H2SO4溶液中极化曲线和阻抗谱拟合参数
图9  铸态和轧制后不同温度热处理态合金在0.5 mol/L H2SO4溶液中的阻抗谱
图10  合金在0.5 mol/L H2SO4溶液中EIS数据的拟合电路
图11  铸态和轧制后不同温度热处理态合金在0.5 mol/L H2SO4溶液中腐蚀SEM图
图12  铸态和轧制后不同温度热处理态合金在0.5 mol/L NaOH溶液中动电位极化曲线
AlloysEcorr / VIcorr / A·cm-2Rs / Ω·cm2CPE1 / 10-5 Ω-1·cm-2·s nn1R1 / kΩ·cm2Σ λ2
As-cast-0.581.0513.672.260.96218.298.62 × 10-4
800 ℃-0.591.1710.592.430.95186.845.31 × 10-4
1000 ℃-0.570.9411.662.480.95216.576.96 × 10-4
1200 ℃-0.581.1911.292.530.95205.303.46 × 10-4
表4  铸态和轧制后不同温度热处理态合金在0.5 mol/L NaOH溶液中极化曲线和阻抗谱拟合参数
图13  铸态和轧制后不同温度热处理态合金在0.5 mol/L NaOH溶液中的阻抗谱
图14  铸态和轧制后不同温度热处理态合金在0.5 mol/L NaOH溶液中腐蚀后的SEM图
图15  铸态和轧制后不同温度热处理态合金在3.5%NaCl溶液中动电位极化曲线
AlloysEcorr / VIcorr / μA·cm-2Epit / VIpass / μA·cm-2
As-cast-0.330.870.262.05
800 ℃-0.401.690.323.52
1000 ℃-0.401.870.270.27
1200 ℃-0.401.240.410.41
表5  铸态和轧制后不同温度热处理态合金在3.5%NaCl溶液中动电位极化曲线拟合参数
图16  铸态和轧制后不同温度热处理态合金在3.5%NaCl溶液中的EIS谱
图17  合金在3.5%NaCl溶液中EIS数据的拟合电路
AlloysRsΩ·cm2R1kΩ·cm2R2kΩ·cm2RpkΩ·cm2CPE110-5 Ω-1·cm-2·s nCPE210-5 Ω-1·cm-2·s nn1n2Σ λ2
As-cast20.2031.62282.36313.982.240.560.940.601.44 × 10-4
800 ℃20.5630.31258.69289.002.660.220.930.422.01 × 10-4
1000 ℃26.91208.74184.84393.582.270.730.030.572.28 × 10-4
1200 ℃26.00212.59255.14467.731.960.490.940.632.18 × 10-4
表6  铸态和轧制后不同温度热处理态合金在3.5%NaCl溶液中阻抗参数
图18  铸态和轧制后不同温度热处理态合金在3.5%NaCl溶液中腐蚀后的SEM图
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[2] Xiang C, Wang J Z, Fu H M, et al. Corrosion behavior of several high-entropy alloys in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107
[2] (向 超, 王家贞, 付华萌 等. 几种高熵合金在核电高温高压水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 107)
[3] Wang Y, Li M Y, Sun L L, et al. Microstructure and corrosion property of FeCrNiCo(Cu/Mn) high entropy alloys [J]. Chin. J. Nonferrous Met., 2020, 30: 94
[3] (王 勇, 李明宇, 孙丽丽 等. FeCrNiCo(Cu/Mn)高熵合金组织及腐蚀性能 [J]. 中国有色金属学报, 2020, 30: 94)
[4] Zhang H K, Huang F, Xu Y F, et al. Microstructure evolution and electrochemical passivation behavior of FeCrMn1.3NiAl x high entropy alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 218
[4] (张恒康, 黄 峰, 徐云峰 等. FeCrMn1.3NiAl x 高熵合金显微组织演变及电化学钝化行为 [J]. 中国腐蚀与防护学报, 2022, 42: 218)
doi: 10.11902/1005.4537.2021.080
[5] Zhao K, Jiang P, Wang H H, et al. Corrosion resistance of (FeCoNiCr)100- x Mn x high entropy alloys in NaCl and NaOH solutions [J]. Heat Treat. Met., 2022, 47(5): 40
doi: 10.13251/j.issn.0254-6051.2022.05.006
[5] (赵 堃, 蒋 鹏, 王虎虎 等. (FeCoNiCr)100- x Mn x 高熵合金在NaCl和NaOH溶液中的抗腐蚀性能 [J]. 金属热处理, 2022, 47(5): 40)
[6] Niu X L, Wang L J, Sun D, et al. Research on microstructure and electrochemical properties of Al x FeCoCrNiCu (x = 0.25, 0.5, 1.0) high-entropy alloys [J]. J. Funct. Mater., 2013, 44: 532
[6] (牛雪莲, 王立久, 孙 丹 等. Al x FeCoCrNiCu (x = 0.25、0.5、1.0)高熵合金的组织结构和电化学性能研究 [J]. 功能材料, 2013, 44: 532)
[7] Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: a review [J]. Metals, 2017, 7: 43
[8] Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
[9] Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties [J]. Appl. Phys. Lett., 2007, 90: 181904
[10] Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in Al x CoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys [J]. Mater. Sci. Eng., 2009, 163B: 184
[11] Wang Y P, Li B S, Ren M X, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy [J]. Mater. Sci. Eng., 2008, 491A: 154
[12] Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Al x CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids [J]. Corros. Sci., 2010, 52: 1026
[13] Shi Y Z, Yang B, Xie X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
[14] Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
[15] Jiang S Y, Lin Z F, Xu H M, et al. Studies on the microstructure and properties of Al x CoCrFeNiTi1- x high entropy alloys [J]. J. Alloy. Compd., 2018, 741: 826
[16] Vaidya M, Prasad A, Parakh A, et al. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: novel approach to alloy synthesis using mechanical alloying [J]. Mater. Des., 2017, 126: 37
[17] Parakh A, Vaidya M, Kumar N, et al. Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2021, 863: 158056
[18] Lu Q Q, Chen X H, Tian W, et al. Corrosion behavior of a non-equiatomic CoCrFeNiTi high-entropy alloy: a comparison with 304 stainless steel in simulated body fluids [J]. J. Alloy. Compd., 2022, 897: 163036
[19] Dasari S, Sarkar A, Sharma A, et al. Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation [J]. Acta Mater., 2021, 202: 448
doi: 10.1016/j.actamat.2020.10.071
[20] Wu S W, Xu L, Ma X D, et al. Effect of annealing temperatures on microstructure and deformation behavior of Al0.1CrFeCoNi high-entropy alloy [J]. Mater. Sci. Eng., 2021, 805A: 140523
[21] Shi Z J, Wang Z B, Wang X D, et al. Effect of thermally induced B2 phase on the corrosion behavior of an Al0.3CoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2022, 903: 163886
[22] Wei L, Qin W M. Corrosion mechanism of eutectic high-entropy alloy induced by micro-galvanic corrosion in sulfuric acid solution [J]. Corros. Sci., 2022, 206: 110525
[23] Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel [J]. Corros. Sci., 2005, 47: 2257
[24] Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Al x CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments [J]. Corros. Sci., 2008, 50: 2053
[25] Wang Z, Jin J, Zhang G H, et al. Effect of temperature on the passive film structure and corrosion performance of CoCrFeMoNi high-entropy alloy [J]. Corros. Sci., 2022, 208: 110661
[1] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[2] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[3] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[4] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[5] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[6] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[7] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[8] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[9] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[10] 潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[11] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[12] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[13] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[14] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[15] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.