中国腐蚀与防护学报, 2025, 45(4): 975-982 DOI: 10.11902/1005.4537.2024.326

研究报告

聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的分子动力学模拟研究

夏渊1, 廉兵杰1, 程佳2, 李文,2

1 中海油常州涂料化工研究院有限公司 常州 213016

2 中国海洋大学材料科学与工程学院 青岛 266100

Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study

XIA Yuan1, LIAN Bingjie1, CHENG Jia2, LI Wen,2

1 CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd., Changzhou 213016, China

2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

通讯作者: 李 文,E-mail:liwen3710@ouc.edu.cn,研究方向为海洋功能防护材料

收稿日期: 2024-10-09   修回日期: 2024-11-26  

基金资助: 山东省高等学校青年创新团队发展计划.  2023KJ033
青岛市海洋产业关键技术攻关项目.  24-1-3-hygg-16-hy

Corresponding authors: LI Wen, E-mail:liwen3710@ouc.edu.cn

Received: 2024-10-09   Revised: 2024-11-26  

Fund supported: Youth Innovation Plan of Shandong Province.  2023KJ033
Key Technology Research Project of Qingdao Marine Industry.  24-1-3-hygg-16-hy

作者简介 About authors

夏渊,男,1984年生,硕士生

摘要

采用分子动力学模拟方法研究了聚天冬氨酸酯聚脲胺基组分的环状平面分子结构和线型分子结构对涂层微观结构及腐蚀介质扩散行为的影响。结果表明:相比于线型分子结构,环状平面分子结构具有较大的空间位阻,体系内自由体积较大,密度较小;分子结构支化程度的增加可进一步增加涂层的自由体积,导致体系致密性下降;分子链段长度的增大对体系致密性的影响较小;水分子可与聚脲分子形成氢键,并倾向于以聚集态的形式存在于涂层内部。从涂层耐蚀性的角度来说,线型分子结构更有利于形成致密的涂层结构,增强涂层耐蚀性。本文通过分子模拟方法开展的涂层结构与性能关联机制研究,为涂料配方设计提供了分子模拟筛选新手段。

关键词: 聚天冬氨酸酯聚脲 ; 分子结构 ; 腐蚀介质 ; 分子动力学模拟

Abstract

Herein, the influence of cyclic planar molecular structure and linear molecular structure of polyaspartic ester polyurea amino component on the microstructure of polyurea coatings and the diffusion behavior of corrosive media within the coating was studied by means of molecular dynamics simulation. The results indicate that compared with linear molecular structures, cyclic planar molecular structures have greater steric hindrance, resulting larger free volume and lower density of the polyurea system; The increase in molecular branching can further increase the free volume of the coating, leading to a decrease in the density of the system; The increase in molecular chain segment length has a relatively small impact on the compactness of the system; Water molecules can form hydrogen bonds with polyurea molecules and tend to exist in an aggregated state inside the coating. Regarding the corrosion resistance of the formed coating, linear molecular structures are more conducive to formation of dense coating structures and enhancement of coating corrosion resistance. Finally, this article conducts a study on the correlation mechanism between coating structure and performance through molecular simulation methods, providing a new means of molecular simulation screening for coating formulation design.

Keywords: polyaspartic ester polyurea ; molecular structure ; corrosive media ; molecular dynamics simulation

PDF (5080KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

夏渊, 廉兵杰, 程佳, 李文. 聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的分子动力学模拟研究. 中国腐蚀与防护学报[J], 2025, 45(4): 975-982 DOI:10.11902/1005.4537.2024.326

XIA Yuan, LIAN Bingjie, CHENG Jia, LI Wen. Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study. Journal of Chinese Society for Corrosion and Protection[J], 2025, 45(4): 975-982 DOI:10.11902/1005.4537.2024.326

聚脲是分子结构中含有重复脲基的高性能绿色材料,由异氰酸酯组分与胺基化合物反应而成。聚脲涂料因不含溶剂、施工周期短、一次施工可获得高膜厚等优点,在材料腐蚀防护领域得到了广泛应用[1~3]。目前,聚脲涂料经历了由第一代芳香族聚脲,第二代脂肪族聚脲到第三代聚天冬氨酸酯聚脲的发展过程。其中,第三代聚天冬氨酸酯聚脲的活性大大降低,固化时间可调,不需要专门施工设备,解决了前两代聚脲反应速度过快、表面状态较差、对基体润湿性弱等问题。此外,聚天冬氨酸酯聚脲具有优良的耐腐蚀性和耐候性,近年来得到了大范围推广应用[4~7]

聚天冬氨酸酯聚脲是由异氰酸酯类固化剂与聚天冬氨酸酯经固化交联而成,其中聚天冬氨酸酯作为聚脲胺基组分,其分子结构对聚脲涂层施工过程的固化时间有较大影响,通过改变胺基组分分子结构可调控聚脲涂层固化时间,然而分子结构的改变会影响涂层微观结构,从而使其耐蚀性发生改变。因此,研究其分子结构对聚脲微观结构及耐蚀性的影响具有重要实际应用价值。聚天冬氨酸酯通常是由二烷基马来酸酯与脂肪族伯二胺经过Michael加成反应而成[8]。该过程将树脂中的伯胺转化为仲胺,并可引入冠状位阻基团,使其与异氰酸酯反应活性大大降低,从而延长涂料固化时间。通过改变聚天冬氨酸酯分子结构中X基团的类型,可得到系列聚天冬氨酸酯衍生物。但不同X基团以及分子聚合度对聚天冬氨酸酯聚脲涂层防腐蚀性能的影响,特别是分子水平上的微观影响机制还未见报道。为了进一步提高涂层的综合性能,从分子水平上认识聚天冬氨酸酯分子结构对聚脲微观结构与性能的影响对于合理筛选聚天冬氨酸酯分子结构具有重要参考价值。

通过实验方法探明聚天冬氨酸酯聚脲分子结构与涂料性能之间的微观关联关系存在成本高、周期长和微观机理难以揭示等现实困难。近年来快速发展的分子模拟技术为以上研究提供了有力工具[9,10]。该方法在微观构型分析、动态信息刻画、构效关系研究、相互作用考察等方面展现出强大的能力,成为补充和弥补实验研究不足的重要方法[11~13]。目前,分子动力学模拟在研究有机涂层微观结构和腐蚀介质扩散行为方面已经得到了广泛的应用。例如Jian和Lau[14]通过分子动力学模拟研究了功能化碳纳米管对环氧树脂的影响,从分子水平揭示了碳纳米管官能团化对环氧树脂的增强机制;Sun等[15]研究了水分子在石墨烯增强环氧树脂防腐涂层扩散行为,为环氧树脂防腐涂层的改性提供了理论指导;Mansourian-Tabaei等[16]使用分子动力学模拟方法研究了不同涂层配方的热障涂层性能,发现孔隙率和纤维素纳米晶体含量对涂层性能有显著影响,并提出了一种优化热障涂层的方法。对于聚脲涂层而言,开展聚天冬氨酸酯聚脲分子结构和性能调控的分子模拟研究,可为后续涂料的开发及配方设计提供有力指导,缩短新材料研发周期,节约人力物力成本。基于此,本论文选取了4种典型聚天冬氨酸酯树脂作为研究对象,构建了聚天冬氨酸酯聚脲涂层模拟体系,通过分子动力学模拟,揭示了聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为影响的微观机制。

1 模拟细节

1.1 模型构建

本文选用具有环状平面分子结构和线型分子结构的两类共4种聚天冬氨酸酯树脂作为研究对象,研究聚天冬氨酸酯聚脲胺基组分分子结构对涂层微观结构及腐蚀介质扩散行为的影响。4种聚天冬氨酸酯树脂分别是由马来酸二乙酯与聚醚胺(A1)、3,3'-二甲基-4,4-二氨基二环己基甲烷(A2)、4,4'-二氨基二环己基甲烷(A3)、1,6-己二胺(A4)反应获得。以A1树脂为例,其是由2份的马来酸二乙酯与1份的聚醚胺反应得到,进一步将该树脂与缩二脲异氰酸酯固化剂反应,可获得聚天冬氨酸酯聚脲(图1a)。类似的,其它聚天冬氨酸酯树脂的合成过程及对应聚脲的反应原理与图1a类似。本文将对应聚脲命名为A1聚脲、A2聚脲、A3聚脲、A4聚脲,其中A1与A4具有线型分子结构,A2与A3树脂具有环状平面分子结构。

图1

图1   马来酸二乙酯与聚醚胺反应制备聚天冬氨酸酯树脂及该树脂与缩二脲异氰酸酯反应制备聚天冬氨酸酯聚脲反应原理图,3,3'-二甲基-4,4-二氨基二环己基甲烷,4,4'-二氨基二环己基甲烷分子结构及1,6-己二胺分子结构

Fig.1   Synthesis reactions of polyaspartic acid ester resin and polyaspartic acid ester polyurea from diethyl maleate and polyether amine, and the resin and diuret isocyanate, respectively (a), molecular structures of 3,3'- dimethyl-4,4-diaminocyclohexylmethane (b), 4,4 '- diaminodicyclohexylmethane (c) and 1,6-Hexanediamine (d)


根据图1a反应原理,构建了如图2a~d所示的A1、A2、A3和A4聚天冬氨酸酯树脂分子模拟模型,其中A1树脂中聚醚胺的重复结构单元数为3。为了考察树脂固化交联程度对涂层性能的影响,分别构建了由2 (3、4)个聚天冬氨酸酯和2 (3、4)个缩二脲异氰酸酯组成的聚脲分子,分别命名为4DT、6DT和8DT,由2个A1树脂分子与2个缩二脲异氰酸酯分子反应获得的聚脲(4DT)分子模拟模型如图2e所示。为研究聚脲涂层微观结构信息,构建了由30个固化交联后聚脲分子组成的模拟体系,如图2f所示。采用类似的方法,同样构建了其它三种聚脲体系分子模拟模型。

图2

图2   A1~A4树脂分子模拟模型,及A1树脂与缩二脲异氰酸酯反应生成聚脲分子模型和聚脲涂层体系模拟模型

Fig.2   Molecular models of A1 (a), A2 (b), A3 (c) and A4 (d) resins, molecular model of polyurea synthesized by the reaction between A1 resin and biuret isocyanate (e), and simulation model of polyurea coating system (f)


1.2 模型细节

本文采用可准确描述树脂间分子相互作用的COMPASS力场来描述分子动力学模拟过程中分子间相互作用[17,18],该力场已广泛应用于聚脲体系的分子动力学模拟研究,能够准确描述聚脲体系性质[19~21]。力场的参数主要来源于第一性原理计算及经验数据,包括键键相互作用、交叉项相互作用以及非键相互作用,如 式(1)和(2)所示[22]

Etotal=Evalence+Ecross-term+Enonbond
Enonbond=i>jqiqjrij+𝓁ij[2(r0rij)9-3(r0rij)6]

其中,Evalence包括化学键伸缩能、键角弯曲能以及二面角扭转能,Ecross-term表示由邻近原子诱导产生的键长、键角的扭转能,Enonbond表示非键原子间的相互作用能。所有体系的分子动力学模拟都在周期性边界条件下完成,模拟过程采用等温等压系综(NPT),模拟温度设置为298 K,采用Nose方法来控制模拟体系中的热力学温度[23],模拟体系的压力采用Berendsen方法进行控制[24],时间步长设置为1 fs,每间隔1 ps保存一次数据用于数据分析,每个模拟体系的模式时间设置为3 ns,以保证模拟体系充分平衡。

2 结果与讨论

2.1 体系密度

4种聚脲分子在链长为4DT、6DT和8DT时的模拟体系密度随时间的变化如图3所示。在初始模型构建阶段,所有模拟体系的初始密度均为1 g/cm3。模拟开始后,在NPT系综下模拟体系体积逐渐减小,密度迅速增加。随着聚脲分子在模拟过程中不断运动与调整,经过1 ns模拟后体系密度在平衡位置波动(图3),表明体系已趋于稳定,达到平衡状态。由图还可见,不管分子链段长度如何,A1和A4聚脲体系的密度近乎相同且在4种模拟体系中最大,约为1.135 g/cm3。A3聚脲体系的密度处在中间位置,约为1.115 g/cm3,A2聚脲体系的密度最小,约为1.110 g/cm3。此外,A2聚脲体系不论在何种分子链段长度下,密度总是最小的。对于A3聚脲而言,当分子链段长度较短时,密度要明显高于A2树脂,约为1.12 g/cm3,但当分子链段长度较大时,A3体系的密度只是略高于A2体系的密度,约为1.11 g/cm3。因此,在这4种树脂体系中,A3体系对于分子链段长度的变化是最为敏感的。

图3

图3   聚脲体系在不同聚合程度下的密度随模拟时间的演变

Fig.3   Time dependences of the densities of polyurea systems with different polymerization degrees: (a) 4DT, (b) 6DT, (c) 8DT


图3得到的不同体系密度变化可从聚脲分子结构的角度进行解释。对于4种聚脲体系,主要区别在于胺基组分分子结构,其中A1与A4聚脲中胺基组分为链状结构,而A2与A3具有环状平面结构。环状平面结构在模拟体系中可对应较大的空间位阻,使体系中产生较多的孔隙,从而使体系密度降低。相比于A3分子,A2分子中含有两个甲基侧基基团(图1d),使其空间位阻效应进一步增大,从而使其具有最小的体系密度。而分子链长的增加对体系密度的影响并不明显,这可能是由于所构建模型中分子链长差异较小,不能产生明显的密度变化。

2.2 自由体积分数

为了定量表征不同聚脲体系的致密程度,通过 式(3)计算了所模拟体系的自由体积分数(FFV),计算方法如下所示[25]

FFV=Vfree/(Vfree+Voccupy)

其中,Vfree表示聚脲模拟体系中空腔的体积,Voccupy表示被聚脲分子所占有的体积。图4所示为A1聚脲体系中自由体积,其中被灰色区域包括的体积即为体系内的自由体积。可以看出,在A1体系的内部存在有大量的空腔,这有利于水分子以及侵蚀性粒子(如Na+、Cl-)在体系内的存在和扩散,在宏观上表现为腐蚀性介质对涂层的损伤,具体分析将在下面详细介绍。

图4

图4   A1聚脲6DT涂层自由体积(为了更清晰的观察自由体积形状,体系内的树脂分子以线的形式显示)

Fig.4   Free volume of A1 polyurea 6DT coating (in order to show the shape of the free volume more clearly, the resin molecules in the system are displayed as lines)


为了定量比较不同聚脲体系的自由体积大小,利用 式(3)计算了不同体系的FFV,如图5所示。一般而言,FFV越大体系致密程度越低。可以明显看出不论聚脲分子链段长度如何变化,A1和A4体系的FFV相差不大且总是要小于A2和A3体系。这表明,A2和A3体系中的空腔占比较多,内部结构较为疏松,这一结果与图4所得的结论一致。此外,从图5d可以看出,分子链段长度的增加对聚脲涂层致密性的影响较小。

图5

图5   4DT、6DT和8DT的四种树脂体系的FFV及其对比图

Fig.5   FFV data of 4DT (a), 6DT (b) and 8DT (c) A1-A4 resin systems, and their comparison chart (d)


2.3 水分子在聚脲涂层内的扩散行为

涂层在使用过程中,腐蚀性介质在涂层内的扩散迁移是导致涂层失效的关键。研究水分子等侵蚀性粒子在涂层中的扩散过程和机理对于提高涂层的长期耐久性至关重要。本文模拟研究了水分子在以上聚脲涂层中的扩散行为,并分析了水分子均方位移曲线,获得了水分子扩散系数、扩散路径及其与聚脲分子间的微观相互作用。首先计算了水分子在涂层内的均方位移(MSD)曲线,其计算方法如 式(4)所示[26]

MSD(t)=<|ri(t)-ri(0)|2>

其中,ri (t)代表分子i在时间t所处的位置,ri (0)代表分子i初始所处的位置。通常,MSD值越大,表明分子扩散越快。图6a展示了水分子在不同6DT聚脲体系内的MSD曲线。可以看出,水分子在4种聚脲体系内的扩散能力顺序为A2 > A3 > A4 > A1。此外,水分子在A2树脂体系的扩散能力要远大于其他3个树脂体系。这与前面计算的不同体系FFV的趋势相同。这表明,体系中存在的空腔为水分子的扩散提供了必要条件。水分子的扩散过程可以描述如下,由于热力学运动,水分子首先在涂层界面区域存在,并始终处于运动状态,但很难进入树脂体系内部。由于聚脲分子的热运动,涂层内部的空腔位置和大小也会发生变化,在一个偶然的机会下,水分子会在与涂层的相互作用下进入空腔,然后得以进入涂层内部。涂层内部的空腔为水分子的存在提供了空间,水分子可以沿着空腔的空间从一个空腔传输到另一个空腔,实现了水分子在涂层内部的扩散。

图6

图6   水分子在6DT A1~A4聚脲体系内以及在不同分子链段长度A4聚脲体系内的MSD曲线

Fig.6   MSD curves of water molecules in 6DT A1-A4 polyurea systems (a) and A4 polyurea systems with different molecular chain lengths (b)


为了进一步定量描述水分子在涂层内的扩散能力,根据图6分别计算了水分子的扩散系数。当聚合度为6DT时(图6a所示体系),4种树脂内的扩散系数分别为1.17 × 10-11 m2/s (A1)、4.50 × 10-11 m2/s(A2)、2.11 × 10-11 m2/s (A3)、1.46 × 10-11 m2/s (A4)。可以看出,A1树脂中水分子的扩散系数最小,表明水分子在该树脂内部的运动极为缓慢,能够阻碍水分子越过聚脲涂层,从而起到了较好的防腐蚀效果。同样具有链状结构的A4树脂其内部水分子的扩散系数也要小于具有环状平面结构的A2和A3涂层体系,这表明具有相对平滑的链状分子结构的聚天冬氨酸酯聚脲具有更好的防腐蚀效果。

此外,以A4体系为例,图6b展示了水分子在不同聚合度数值体系的MSD曲线,计算得到3种聚合度下水分子扩散系数分别为1.462 × 10-11 m2/s (4DT)、2.17 × 10-11 m2/s (6DT)、5.72 × 10-11 m2/s (8DT)。可以看出,随着树脂分子聚合度的增加,MSD曲线的斜率不断增加,水分子的扩散系数也在不断增加,这是由于较长的分子链具有较大的空间位阻,导致涂层内部空腔较多引起的。因此,对于A4聚脲,在一定范围内增加分子链段长度,可增加体系的自由体积,促进水分子在涂层内的扩散迁移。同样以A4聚脲体系为例,接下来分析了水分子在涂层内的氢键结构。如图7a所示为涂层内聚脲分子中双键氧原子与水中氢原子间的径向分布函数曲线。从图中可以看出,第一个峰值出现在0.18 nm附近,根据文献中氢键的定义标准[27,28],这一距离符合氢键形成的距离标准,证明了水分子可以与聚脲分子形成氢键,从而加速涂层吸水过程。氢键的形成进一步可从图7a插图中得到证明,一个水分子可同时与聚脲分子中两个双键氧原子形成两个氢键,这一过程促进了水分子在涂层内的扩散迁移。为进一步研究水分子与聚脲分子间的氢键结构,图7b所示为涂层内水分子与聚脲分子中极性基团形成的氢键结构。从图中可以看出,一个水分子可以与其它极性基团形成多个氢键。根据所形成氢键的数目可以将涂层内的水分子分为5类,即无氢键键合水分子(游离水)、一个氢键键合水分子、两个氢键键合水分子、3个氢键键合水分子和4个氢键键合水分子[29]。在模拟初始,水分子均以孤立水分子的形式均匀散布于模拟体系中,经过分子动力学模拟,从图7b中可以看出水分子在涂层内倾向于以聚集形态存在。这是由于聚脲分子整体呈现疏水状态,不利于水分子以孤立形式存在,水分子之间较强的极性相互作用,可促使水分子聚集,聚集态的水分子可以对涂层局部形成较大的损伤,不利于涂层的长效防护。

图7

图7   A4聚脲分子结构中双键氧原子与水分子中氢原子间的径向分布函数,以及水分子分布及其与聚脲分子之间的氢键结构

Fig.7   Radial distribution function between the double bond oxygen atom in A4 polyurea molecular structure and the hydrogen atom in water molecule (a), and distribution of water molecules and their hydrogen bonding structures with polyurea molecules (b)


3 结论

(1) 树脂密度与分子结构有关,A1和A4聚脲体系的密度近乎相同且最大,A3体系的密度略高于A2体系密度,体系聚合度的增加对于密度的影响较小。

(2) A1和A4的自由体积较小,孔隙占比较小,结构较为紧密,树脂聚合度的变化会对自由体积产生影响。

(3) 水分子在4种树脂体系内的扩散能力顺序为A2 > A3 > A4 > A1,且水分子在A2聚脲体系的扩散能力要远大于其他3个聚脲体系,体系内的空腔会促进水分子的扩散,降低涂层的耐蚀性。

(4) A1树脂相较于其他3种树脂可能具有更好的耐腐蚀性能。因此在聚脲涂层胺基组分分子结构筛选过程中,在兼顾涂层防腐蚀性能时,应选取线性分子结构的树脂。

参考文献

Chen J N, Jiang Y S, Xiao F, et al.

Research progress of anti-corrosion for polyurea coatings in marine environment

[J]. Mater. Prot., 2022, 55: 129

[本文引用: 1]

(陈菊娜, 蒋以山, 肖 锋 .

海洋环境中聚脲涂层防腐研究进展

[J]. 材料保护, 2022, 55: 129)

[本文引用: 1]

Liu Z Y, Song W, Cheng Y C.

Design and application of polyurea anti-corrosion coating for concrete surface of flue gas desulfurization devices

[J]. Corros. Prot., 2010, 31: 380

(刘宗瑜, 宋 蔚, 程玉春.

烟气脱硫装置混凝土表面聚脲防腐蚀涂层设计与应用

[J]. 腐蚀与防护, 2010, 31: 380)

Shojaei B, Najafi M, Yazdanbakhsh A, et al.

A review on the applications of polyurea in the construction industry

[J]. Polym. Advan. Technol., 2021, 32: 2797

[本文引用: 1]

Shi F.

Study on preparation of polyaspartic polyurea and its property of anti-cavitation

[D]. Beijing: China Academy of Machinery Science & Technology, 2011

[本文引用: 1]

(史 锋.

聚天冬氨酸酯聚脲涂层的制备及抗空蚀性能的研究

[D]. 北京: 机械科学研究总院, 2011)

[本文引用: 1]

Meng Q S, Wang P, Yu Y, et al.

Polyaspartic polyurea/graphene nanocomposites for multifunctionality: self-healing, mechanical resilience, electrical and thermal conductivities, and resistance to corrosion and impact

[J]. Thin Wall. Struct., 2023, 189: 110853

Lian B J, Tu Q, Wang H H, et al.

Development and application of solvent-free DTM polyaspartic ester based coatings

[J]. Coat. Prot., 2022, 43: 1

(廉兵杰, 涂 强, 王焕焕 .

无溶剂底面合一聚天冬氨酸酯聚脲涂料的研制及应用研究

[J]. 涂层与防护, 2022, 43: 1)

Liu J R, Yu K J, Qian K, et al.

Research progress of polyaspartate polyurea

[J]. Paint Coat. Ind., 2022, 52: 77

[本文引用: 1]

(刘俊仁, 俞科静, 钱 坤 .

聚天冬氨酸酯聚脲的研究进展

[J]. 涂料工业, 2022, 52: 77)

DOI      [本文引用: 1]

聚天冬氨酸酯聚脲是一种新型的脂肪族、慢反应、高性能的绿色环保材料,本文根据当下对聚天冬氨酸酯聚脲的研究趋势和热点进行了总结归纳,介绍了聚天冬氨酸酯聚脲结构、不同于常规聚脲的反应机理以及优缺点,重点介绍了聚天冬氨酸酯聚脲的制备、改性方法以及聚天冬氨酸酯聚脲近几年的应用领域,最后总结归纳了聚天冬氨酸酯聚脲发展过程中存在的问题和发展方向。

Natour S, Gajdošová V, Morávková Z, et al.

Aspartate-based polyurea coatings: ambient cure process and inevitable transformation of urea groups into hydantoin cycles in polyurea networks and their impact on film properties

[J]. Prog. Org. Coat., 2024, 192: 108449

[本文引用: 1]

Van Gunsteren W F, Dolenc J, Mark A E.

Molecular simulation as an aid to experimentalists

[J]. Curr. Opin. Struc. Biol., 2008, 18: 149

DOI      PMID      [本文引用: 1]

Computer-based molecular simulation techniques are increasingly used to interpret experimental data on biomolecular systems at an atomic level. Direct comparison between experiment and simulation is, however, seldom straightforward. The available experimental data are limited in scope and generally correspond to averages over both time and space. A critical analysis of the various factors that may influence the apparent degree of agreement between the results of simulations and experimentally measured quantities is presented and illustrated using examples from recent literature.

Sheng G W, Qi J, Lu P, et al.

Molecular simulation on oxidation mechanism of FeCr alloy in high temperature steam environment

[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 159

[本文引用: 1]

(绳淦文, 祁 晶, 卢 平 .

高温蒸气环境中FeCr合金氧化机理的分子模拟研究

[J]. 中国腐蚀与防护学报, 2023, 43: 159)

DOI      [本文引用: 1]

超 (超) 临界机组FeCr合金管与高温蒸气反应形成氧化膜,该氧化膜剥落容易导致爆管故障,严重危害机组安全运行。本文基于ReaxFF反应分子动力学,从原子尺度揭示FeCr合金高温蒸气氧化机理。研究结果表明,在氧化初期,合金表面Cr原子促进蒸气分解,向内迁移的O原子氧化合金,形成内层FeCr氧化膜。随后,在内层氧化膜生长内应力作用下,金属原子逐层向外迁移,并由于氧化膜内Fe原子和Cr原子迁移速率的差异,形成双层结构的氧化膜,这与实验观察结果一致。蒸气温度对FeCr合金氧化特性有重要影响,并且随着蒸气温度的升高,氧化膜对合金的保护作用逐步降低。

Lbadaoui-Darvas M, Garberoglio G, Karadima K S, et al.

Molecular simulations of interfacial systems: challenges, applications and future perspectives

[J]. Mol. Simulat., 2023, 49: 1229

DOI      [本文引用: 1]

We present a comprehensive review of methods and applications of molecular simulations of interfacial systems. We give a detailed overview of the main techniques and major challenges in the following aspects of solid and fluid surfaces: adsorption at solid surfaces, interfacial transport and surface-to-bulk partitioning. We summarise methods to estimate macroscopic properties interfaces (adsorption isotherms, surface tension and contact angle) and ways to extract quantitative information about fluctuating liquid surfaces. We demonstrate the usage of these methods on recent applications from the fields of atmospheric science, material science and biophysics. The two main goals of this review are: (i) to provide guidance in practical questions, such as choosing software, force field, level of theory, system geometry, and finding the appropriate selective surface analysis methods based on the type of the interface and the nature of the physical problem to be studied; and (ii) to highlight domains where molecular simulations can bring about substantial advances in our understanding in important questions of applied science as a function of future method development and adaptation for applied fields.

Düren T, Bae Y S, Snurr R Q.

Using molecular simulation to characterise metal-organic frameworks for adsorption applications

[J]. Chem. Soc. Rev., 2009, 38: 1237

DOI      PMID     

Molecular simulation is a powerful tool to predict adsorption and to gain insight into the corresponding molecular level phenomena. In this tutorial review, we provide an overview of how molecular simulation can be used to characterise metal-organic frameworks for adsorption applications. Particular attention is drawn to how these insights can be combined to develop design principles for specific applications.

Chen Z, Yuwen P, Wen S H, et al.

First principles study on effect of B addition on oxidation resistance of MoSi2 intermetallic compound

[J]. J. Chin. Soc. Corros. Prot., 2025, 45: 224

[本文引用: 1]

(陈 郑, 宇文佩, 温思涵 .

B添加对MoSi2金属间化合物抗氧化性能影响的第一性原理研究

[J]. 中国腐蚀与防护学报, 2025, 45: 224)

[本文引用: 1]

Jian W, Lau D.

Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level

[J]. Compos. Sci. Technol., 2020, 191: 108076

[本文引用: 1]

Sun W S, Yu S R, Gao S, et al.

Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411

[本文引用: 1]

(孙伟松, 于思荣, 高 嵩 .

水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟

[J]. 中国腐蚀与防护学报, 2021, 41: 411)

DOI      [本文引用: 1]

通过Materials Studio软件建立了石墨烯增强DGEBA/3,3'-DDS交联型环氧树脂模型,采用分子动力学模拟方法研究水分子在不同含量石墨烯 (0%,1.1%,2.3%,3.0%,4.2%和5.8%,质量分数) 增强的环氧树脂防腐涂层内部的扩散过程,为实际环氧树脂防腐涂层的改性提供理论指导。结果表明,水分子在环氧树脂中以氢键结合的“束缚水”和内部微孔中存在的“自由水”两种形式存在,水分子在其内部的扩散主要表现为由自由水的扩散过程,扩散系数随着温度的升高而增大;石墨烯的引入使得水分子的均方位移变化在整个模拟过程中趋于稳定,提高了环氧树脂的阻隔性能,当石墨烯含量为4.2%时,阻隔性能最佳。

Mansourian-Tabaei M, Asiaee A, Hutton-Prager B, et al.

Thermal barrier coatings for cellulosic substrates: a statistically designed molecular dynamics study of the coating formulation effects on thermal conductivity

[J]. Appl. Surf. Sci., 2022, 587: 152879

[本文引用: 1]

Cheng X Y, Ye H, Guo C H, et al.

Molecular dynamics simulation of diffusion behavior of benzotriazole and sodium benzoate in volatile corrosion inhibitor film

[J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1323

[本文引用: 1]

(程学雨, 叶 桓, 郭程皓 .

苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究

[J]. 中国腐蚀与防护学报, 2024, 44: 1323)

DOI      [本文引用: 1]

使用分子动力学模拟的方法,从分子水平研究了不同温度下苯骈三氮唑与苯甲酸钠在低密度聚乙烯中的扩散行为,探究了缓蚀剂的扩散机理。结果表明,苯骈三氮唑的扩散速率较苯甲酸钠小,且均随温度的升高而增大;多组分扩散时苯骈三氮唑、苯甲酸钠的扩散速率减缓并随苯甲酸钠含量的增加而减小。缓蚀剂分子间的相互作用及缓蚀剂分子与扩散体系间的相互作用是影响其扩散的重要原因,苯甲酸钠对苯骈三氮唑的扩散可能存在抑制作用。缓蚀剂扩散系数的实验值与模拟值变化趋势一致,在数值上相差一个数量级。可为缓蚀剂的释放调控及复配提供技术支持。

Farzi N, Ebrahim M.

Mechanical properties and glass transition temperature of metal-organic framework-filled epoxy resin: a molecular dynamics study

[J]. Mater. Chem. Phys., 2024, 314: 128874

[本文引用: 1]

Grujicic M, Pandurangan B, Bell W C, et al.

Molecular-level simulations of shock generation and propagation in polyurea

[J]. Mater. Sci. Eng., 2011, 528A: 3799

[本文引用: 1]

Amani M, Amjad-Iranagh S, Golzar K, et al.

Study of nanostructure characterizations and gas separation properties of poly (urethane-urea)s membranes by molecular dynamics simulation

[J]. J. Membrane. Sci., 2014, 462: 28

Liu M H, Oswald J.

Coarse-grained molecular modeling of the microphase structure of polyurea elastomer

[J]. Polymer, 2019, 176: 1

[本文引用: 1]

Sun H.

COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds

[J]. J. Phys. Chem., 1998, 102B: 7338

[本文引用: 1]

Nosé S.

A unified formulation of the constant temperature molecular dynamics methods

[J]. J. Chem. Phys., 1984, 81: 511

[本文引用: 1]

Berendsen H J C, Postma J P M, Van Gunsteren W F, et al.

Molecular dynamics with coupling to an external bath

[J]. J. Chem. Phys., 1984, 81: 3684

[本文引用: 1]

Wang B, Ren W W, Wang W F.

Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials

[J]. Dev. Appl. Mater., 2016, 31: 1

[本文引用: 1]

(王 兵, 任伟伟, 王雯霏.

静压力下粘弹性阻尼材料自由体积分数的分子模拟研究

[J]. 材料开发与应用, 2016, 31: 1)

[本文引用: 1]

Ernst D, Köhler J.

Measuring a diffusion coefficient by single-particle tracking: statistical analysis of experimental mean squared displacement curves

[J]. Phys. Chem. Chem. Phys., 2013, 15: 845

DOI      PMID      [本文引用: 1]

We provide experimental results on the accuracy of diffusion coefficients obtained by a mean squared displacement (MSD) analysis of single-particle trajectories. We have recorded very long trajectories comprising more than 1.5 × 10(5) data points and decomposed these long trajectories into shorter segments providing us with ensembles of trajectories of variable lengths. This enabled a statistical analysis of the resulting MSD curves as a function of the lengths of the segments. We find that the relative error of the diffusion coefficient can be minimized by taking an optimum number of points into account for fitting the MSD curves, and that this optimum does not depend on the segment length. Yet, the magnitude of the relative error for the diffusion coefficient does, and achieving an accuracy in the order of 10% requires the recording of trajectories with about 1000 data points. Finally, we compare our results with theoretical predictions and find very good qualitative and quantitative agreement between experiment and theory.

Zhang J, Li W, Yan Y G, et al.

Molecular insight into nanoscale water films dewetting on modified silica surfaces

[J]. Phys. Chem. Chem. Phys., 2015, 17: 451

DOI      PMID      [本文引用: 1]

In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.

Martı J.

Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations

[J]. J. Chem. Phys., 1999, 110: 6876

[本文引用: 1]

Li W, Zhang L, Zhang M T, et al.

Structures of graphene-reinforced epoxy coatings and the dynamic diffusion of guest water: a molecular dynamics study

[J]. Ind. Eng. Chem. Res., 2020, 59: 20749

[本文引用: 1]

/