Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 563-576     CSTR: 32134.14.1005.4537.2024.205      DOI: 10.11902/1005.4537.2024.205
  综合评述 本期目录 | 过刊浏览 |
日本高放废物处置容器腐蚀厚度设计研究进展
彭立园1,2(), 谢敬礼1,2, 曹胜飞1,2, 谭季波3, 吴欣强3, 张兹瑜3
1.核工业北京地质研究院 北京 100029
2.国家原子能机构高放废物地质处置创新中心 北京 100029
3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Review on Corrosion Thickness Design of Canister for High-level Radioactive Waste in Japan
PENG Liyuan1,2(), XIE Jingli1,2, CAO Shengfei1,2, TAN Jibo3, WU Xinqiang3, ZHANG Ziyu3
1.Beijing Research Institute of Uranium Geology, Beijing 100029, China
2.High-level Radioactive Waste, CAEA Innovation Center for Geological Disposal, Beijing 100029, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

彭立园, 谢敬礼, 曹胜飞, 谭季波, 吴欣强, 张兹瑜. 日本高放废物处置容器腐蚀厚度设计研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 563-576.
Liyuan PENG, Jingli XIE, Shengfei CAO, Jibo TAN, Xinqiang WU, Ziyu ZHANG. Review on Corrosion Thickness Design of Canister for High-level Radioactive Waste in Japan[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 563-576.

全文: PDF(5251 KB)   HTML
摘要: 

高放废物的安全处置是一个国际难题。我国通过建设采用“多重屏障系统”概念设计的高放废物深地质处置库,将高放废物与生物圈隔离。其中处置容器作为核心的工程屏障,应满足将高放废物与生物圈隔离、抑制放射性核素向地下水中释放和迁移的安全功能。这要求处置容器在设计寿命年限内保持完整性,不发生腐蚀失效,因此合理设计处置容器的腐蚀厚度至关重要。碳钢对局部腐蚀不敏感,主要发生均匀腐蚀,作为处置容器材料的腐蚀厚度可以通过均匀腐蚀速率计算获得。本文综述了日本高放废物处置容器腐蚀厚度的设计思路,分析了碳钢作为处置容器材料在处置库中可能发生的腐蚀形式,总结了碳钢的均匀腐蚀厚度预测模型并指出了其中的不足,以期望为我国的高放废物处置容器腐蚀厚度设计提供参考。

关键词 高放废物处置容器碳钢均匀腐蚀腐蚀模型腐蚀深度    
Abstract

The safe disposal of high-level radioactive waste is an international challenge. Deep geological disposal repository for high-level radioactive waste with multibarrier system design concept is being planned to construct in China to isolate the radionuclides from the biosphere. To meet the safe function of isolating waste from the biosphere, while also suppressing the release and migration of radionuclides into groundwater within its designed lifetime, the disposal canister, as the key engineering barriers, should maintain its integrity and avoid failure by corrosion. Thus, it is of great significance to design the corrosion allowance of the canister reasonably. Carbon steels are less susceptible to localized corrosion and mainly corrodes uniformly. The corrosion allowance is acquired by the corrosion rate and lifetime when carbon steels are adopted as materials for canister. The design concept of the corrosion allowance of the canister for high-level radioactive waste in Japan is reviewed in the present work. The possible corrosion forms and the corrosion thickness prediction models of the carbon steel canister in disposal repository are analyzed, and modification suggestions are also discussed, aiming to provide a reference for the corrosion thickness design of the canister.

Key wordshigh-level radioactive waste    canister    carbon steel    general corrosion    corrosion model    corrosion depth
收稿日期: 2024-07-08      32134.14.1005.4537.2024.205
ZTFLH:  TG174  
基金资助:高放废物地质处置创新中心基金(WDZC-2023-HDYY-102)
通讯作者: 彭立园,E-mail:17824033690@163.com,研究方向为高放废物处置容器
Corresponding author: PENG Liyuan, E-mail: 17824033690@163.com
作者简介: 彭立园,女,1990年生,博士,工程师
图1  钢发生氢脆的临界氢浓度与屈服强度之间的关系[32]
图2  碳钢在含有CO32-/Cl-的溶液和土壤中的平均腐蚀深度和点蚀因子之间的关系[51,52]
图3  碳钢的阳极极化曲线随测试溶液pH值的变化关系[13,56]
图4  碳钢在pH = 10测试溶液饱和的、不同干密度膨润土中的阳极极化曲线[13]
图5  碳钢的腐蚀行为与缓冲材料干密度和孔隙水pH的关系[51]
图6  膨润土孔隙水pH和膨润土干密度之间的关系[51]
图7  模型计算的碳钢的平均腐蚀速率随时间的变化[56]
图8  碳钢在80 ℃压实膨润土中的预测和试验平均腐蚀深度随时间的变化[50]
图9  碳钢在无氧溶液或膨润土中的平均腐蚀速率随时间变化关系[59~61]
Welding methodCSiMnPSCuCrMo
TIGBase metal0.150.190.360.0060.0020.010.050.01
Weld metal0.110.671.290.0090.0110.250.02< 0.01
Filler metal0.100.731.400.0110.0140.240.03-
MAGBase metal0.110.250.650.0070.0020.050.040.01
Weld metal0.0820.581.070.0100.0140.200.03<0.01
Filler metal0.100.761.370.0100.0140.24--
EBWBase metal0.110.250.700.0110.0030.050.110.02
Weld metal0.120.250.650.0120.0040.050.110.02
表1  试样的化学成分[70] (mass fraction / %)
图10  试样在碱性碳酸盐溶液中浸泡90 d后的表面形貌[70]
图11  均匀腐蚀和局部腐蚀中点蚀因子随平均腐蚀深度的变化[70]
图12  MAG焊接接头在人工海水中浸泡3年后的表面形貌[66]
图13  焊接接头(TIG,MAG以及EBW)和基体金属在80 ℃、人工海水饱和的无氧膨润土中腐蚀3年的平均腐蚀速率[66]
[1] Ishikawa H, Honda A, Tsurudome K, et al. Selection of candidate materials for overpack and life prediction of Carbon Steel overpack [R]. Ibaraki-ken: Japan Nuclear Cycle Development Institute (JNC), PNC TN8410 92130, 1992
[2] Rebak R B. Selection of corrosion resistant materials for nuclear waste repositories [A]. Materials Science and Technology 2006 [C]. Cincinnati, 2006
[3] Rebak R B. Materials in nuclear waste disposition [J]. JOM, 2014, 66: 455
[4] Landolt D, Davenport A, Payer J, et al. A review of materials and corrosion issues regarding canisters for disposal of spent fuel and high-level waste in Opalinus clay [R]. Wettingen: National Cooperative for the Disposal of Radioactive Waste, 2009
[5] King F. Nuclear waste canister materials: corrosion behavior and long-term performance in geological repository systems [A]. AptedMJ, AhnJ. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste [M]. 2nd ed. Duxford: Woodhead Publishing, 2017: 365
[6] Werme L O. Fabrication and testing of Copper canister for long-term isolation of spent nuclear fuel [J]. MRS Online Proc. Library, 1999, 608: 77
[7] King F, Kolar M. Corrosion of Copper containers prior to saturation of a nuclear fuel waste disposal vault [R]. Pinawa: Atomic Energy of Canada Limited, 1997
[8] Honda A, Taniguchi N. An assessment of corrosion life of Copper overpack [R]. Tokai: Japan Nuclear Cycle Development Institution, 1999
[9] Ohba K, Hara N, Sugimoto K, et al. Passivation and depassivation behavior of Carbon Steel in water in contact with bentonite [J]. Zairyo-to-Kankyo, 1996, 45: 209
[10] King F. Overview of a Carbon Steel container corrosion model for a deep geological repository in sedimentary rock [R]. Toronto: Nuclear Waste Management Organization, 2007
[11] Martin F, Perrin S, Fenart M, et al. On corrosion of Carbon Steels in Callovo-Oxfordian clay: complementary EIS, gravimetric and structural study providing insights on long term behaviour in French geological disposal conditions [J]. Corros. Eng. Sci. Technol., 2014, 49: 460
[12] Sumiyama M, Tamata A, Mitsui S, et al. Natural analog research on corrosion behavior of Carbon Steel overpack in bentonite [A]. Proceedings of the 44th Japan Conference on Material and Environment [C]. 1997: 419
[13] Taniguchi N, Honda A, Ishikawa H. Experimental investigation of passivation behavior and corrosion rate of Carbon Steel in compacted bentonite [J]. MRS Online Proc. Library, 1997, 506: 495
[14] Wei X, Dong J H, Chen N, et al. Effects of bentonite content on the corrosion evolution of low Carbon Steel in simulated geological disposal environment [J]. J. Mater. Sci. Technol., 2021, 66: 46
doi: 10.1016/j.jmst.2020.04.071
[15] Taniguchi N, Kawasaki M, Naito M. Corrosion behavior of carbon steel in compacted bentonite saturated with simulated groundwater under anaerobic condition [J]. Zairyo-To-Kankyo, 2010, 59: 418
[16] Xue F, Liu L Y, Tan L. Aerobic corrosion process of Q235 steel in NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 771
[16] 薛 芳, 刘两雨, 谭 龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为 [J]. 中国腐蚀与防护学报, 2022, 42: 771
[17] Hua F, Pasupathi P, Mon K, et al. Modeling the hydrogen-induced cracking of Titanium Alloys in nuclear waste repository environments [J]. JOM, 2005, 57: 20
[18] Wei X, Dong J H, Ke W. Crevice corrosion of Grade-2 Ti in simulated groundwater for geological disposal of high-level radioactive nuclear waste [J]. Acta Metall. Sin., 2013, 49: 675
doi: 10.3724/SP.J.1037.2013.00090
[18] 魏 欣, 董俊华, 柯 伟. 工业纯Ti在模拟高放废物地质处置环境中的缝隙腐蚀行为 [J]. 金属学报, 2013, 49: 675
[19] Ahn T, Jung H, He X, et al. Understanding long-term corrosion of Alloy 22 container in the potential Yucca Mountain repository for high-level nuclear waste disposal [J]. J. Nucl. Mater., 2008, 379: 33
[20] Rebak R B. Material corrosion issues for nuclear waste disposition in Yucca Mountain [J]. JOM, 2008, 60: 40
[21] Carranza R M. The crevice corrosion of Alloy 22 in the Yucca Mountain nuclear waste repository [J]. JOM, 2008, 60: 58
[22] Oda C, Shibata M. Modelling and experimental studies on bentonite-water interaction [R]. Tokai: Japan Nuclear Cycle Development Institute, 1999
[23] Oda C, Shibata M, Yui M. Evaluation of porewater chemistry in the buffer material for the second progress report H12 [R]. Tokai: Japan Nuclear Cycle Development Institute, 1999
[24] Shimodaira S. Corrosion of metals by bacteria [J]. Corros. Eng. Dig., 1973, 22: 2
[25] Asano E, Sugino H, Kawakami S, et al. Technical development for geological disposal of high-level radioactive waste [R]. Japan: Ishikawajima-Harima Technical Report-4, 1997: 37
[26] Nishimura T, Wada R, Nishimoto H, et al. The effects of bacteria on the corrosion behavior of Carbon Steel in compacted bentonite [R]. Tokai: Japan Nuclear Cycle Development Institute, 1999
[27] Wang J L, Xu N, Wu T, et al. Response of hydrogen diffusion and hydrogen embrittlement to Cu addition in low carbon low alloy steel [J]. Mater. Charact., 2023, 195: 112478
[28] Liu Y, Dong F T, Qi C W, et al. Progress of hydrogen embrittlement in pipeline steel [J]. China Metall., 2024, 34(7): 11
[28] 刘 祎, 董福涛, 齐程伟 等. 管线钢氢脆的研究进展 [J]. 中国冶金, 2024, 34(7): 11
[29] Feng H, Chi Q, Ji L K, et al. Research and development of hydrogen embrittlement of pipeline steel [J]. Corros. Sci. Prot. Technol., 2017, 29: 318
[29] 封 辉, 池 强, 吉玲康 等. 管线钢氢脆研究现状及进展 [J]. 腐蚀科学与防护技术, 2017, 29: 318
[30] Liu Y, Li Y, Li Q. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment [J]. Acta Metall. Sin., 2013, 49: 1089
doi: 10.3724/SP.J.1037.2013.00271
[30] 刘 玉, 李 焰, 李 强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响 [J]. 金属学报, 2013, 49: 1089
[31] Zhao Y, Wang R. An investigation on mechanical behaviors of pipeline steel X70 after electrochemical hydrogen charging [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 293
[31] 赵 颖, 王 荣. X70管线钢电化学充氢后的力学行为研究 [J]. 中国腐蚀与防护学报, 2004, 24: 293
[32] Murata T. Role of hydrogen through APC and HE [A]. 78, 79th Nishiyama Commemorative Technical Seminar [C]. Nishiyama: The Iron and Steel Institute of Japan, 1981: 227
[33] Tanai K, Sato H, Murakami T, et al. A preliminary assessment of gas diffusion and migration [R]. Tokai: Japan Nuclear Cycle Development Institute, 1999
[34] Taniguchi N, Ichikawa S. Measurement of hydrogen content in Carbon Steel exposed to hydrogen gas environment [R]. Japan Nuclear Cycle Development Institute, 1999
[35] Quick N R, Johnson H H. Hydrogen and deuterium in iron, 49–506 ℃ [J]. Acta Metall., 1978, 26: 903
[36] Nishimura R, Yamakawa Y, Wataori H. Hydrogen storage of Carbon Steel in carbon dioxide environment [A]. Proceedings of the 44th Japan Conference on Materials and Environments [C]. 1997:429
[37] Kowaka M. Corrosion damage of metals and corrosion engineering [R]. Kinzoku no Fusyoku Sonsyo to Bosyoku Gijutsu, Agune, 1983
[38] Oda C, Shibata M. Modelling and experimental studies on benton-ite-water interaction [R]. Japan Nuclear Cycle Development Institution, JNC TN8400-99-032, 1999
[39] Ikeda A. Research on hydrogen induced cracking of steel in wet hydrogen sulfide environment [D]. Kyoto: Kyoto University, 1981
[40] Okada H. Stress corrosion cracking and hydrogen cracking of structural steel [A]. Proceeding of 2nd International Conference on SCC and HE of Iron Base Alloys [C]. Firminy: 1977
[41] Beavers J A, Thompson N G, Parkins R N. Stress-corrosion cracking of low-strength Carbon Steels in candidate high-level waste repository environments [R]. Washington: Nuclear Regulatory Commission, 1987
[42] Yui M, Sasamoto H, Arthu R C. Groundwater evolution modeling for the second progress performance assessment (PA) report [R]. Japan Nuclear Cycle Development Institute, 1999: 201
[43] Naito M, Ishihara Y, Umeki H, et al. Study of radiation impact on near field performance of geological disposal system [R]. Tokai: Japan Nuclear Cycle Development Institute, 1999
[44] Honma N, Chiba T, Tanai K. Design concepts for overpack [R]. Japan Nuclear Cycle Development Institute, 1999
[45] Kasahara K, Sato T. Environmental factors that influence the susceptibility of line pipe steels to external stress corrosion cracking [J]. Tetsu-to-Hagane, 1983, 69: 1463
[46] Haruna T, Zhu L H, Shibata T. Environment-induced degradation in strength for Carbon Steel in carbonate/bicarbonate solutions containing chloride ions [J]. Zairyo-to-Kankyo, 1998, 47: 771
[47] Shu R, Shibata T, Haruna T. Initiation condition of SCC in SM400B Carbon Steel in HCO 3 - aqueous solution [A]. Proceedings of 44th Japan Conference on Materials and Environments [C]. 1997: 429
[48] Kasahara K, Adachi H. Study on material factors that influence the susceptibility of line pipe steels to external stress corrosion cracking [J]. Tetsu-to-Hagane, 1983, 69: 1471
[49] Taniguchi N, Kawasaki M, Honda A. The critical condition for the initiation of localized corrosion of Carbon Steel in NaCl-NaHCO3-Na2CO3 [C]. Proceedings of 40th Japan Corrosion Conference. 1993: 239
[50] Honda A, Taniguchi N, Ishikawa H, et al. A modelling study for long-term life prediction of Carbon Steel overpack for geological isolation of high-level redioactive waste [C]. Sapporo: Proceedings of International Symposium on Plant Aging and Life Predictions of Corrodible Structures. 1995: 217
[51] Taniguchi N, Honda A, Kawasaki M, et al. A study for localization of corrosion on Carbon Steel overpack [R]. Tokai: Japan Nuclear Cycle Development Institute, 1999
[52] Romanoff M. Underground Corrosion [M]. Washington: United States Government Printing Office, 1957
[53] Marsh G, Bland I, Desport J, et al. Corrosion assessment of metal overpacks for radioactive waste disposal [J]. European Appl. Res. Rept.-Nucl. Sci. Technol. 1983, 5: 223
[54] Wei X, Liu Y M, Dong J H, et al. Study on corrosion behavior of low Carbon Steel under different water conditions in bentonite of China-Mock-Up [J]. Appl. Clay Sci., 2019, 167: 23
[55] Xue F, Wei X, Dong J H, et al. Effect of chloride ion on corrosion behavior of low Carbon Steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35: 596
[56] Honda A, Taniguchi N. A corrosion life assessment of overpack for geological isolation of high level radioactive waste [R]. Tokai: Japan Nuclear Cycle Development Institute, 1999
[57] Wieland E, Wanner H, Albinsson Y, et al. A surface chemical model of the bentonite-water interface and its implications for modelling the near field chemistry in a repository for spent fuel [R]. Stockholm: Swedish Nuclear Fuel and Waste Management, 1994
[58] Kawasaki M, Honda A. Measurement of effective diffusion coefficient of dissolved oxygen in bentonite [A]. 1994 Autumn Meeting, Atomic Energy Society of Japan, Collection of Drafts K9 [C]. 1994
[59] Honda A, Taniguchi N, Ishikawa H, et al. Experimental research on corrosion behavior of Carbon Steel in anaerobic condition [J]. PNC Tech. Rev., 1997: 125
[60] Simpson J, Valloton P. Experiments on container materials for Swiss high-level waste disposal projects Part II [R]. Wettingen: National Cooperative for the Disposal of Radioactive Waste, 1984: 100
[61] Marsh G P, Bland I D, Taylor K J, et al. An assessment of Carbon Steel overpacks for radioactive waste disposal [R]. Published by the Commission of the European Communities, 1986
[62] Taniguchi N, Honda A, Kawasaki M, et al. The assessment of corrosion type and corrosion rate of Carbon Steel in compacted bentonite [R]. Japan Nuclear Cycle Development Institute, 1999
[63] Suzuki S, Fushimi K, Azumi K, et al. AFM observation of micromorphological change of Carbon Steel surface due to corrosion [A]. Proceedings of 44th Japan Conference on Materials and Environments [C]. 1997: 437
[64] Johnson A B, Francis B. Durability of metals from archaeological objects metal meteorites and native metals [R]. Richland: Battelle Pacific Northwest Laboratories, 1980
[65] Araki K, Motegi M, Emoto Y, et al. Natural analogue study on engineered barriers for underground disposal of radioactive waste [A]. Proceedings of High Level Radioactive Waste and Spent Fuel Management [C]. Kyoto: 1989: 601
[66] Kobayashi M, Yokoyama Y, Takahashi R, et al. Long term integrity of overpack closure weld for HLW geological disposal Part 2-corrosion properties under anaerobic conditions [J]. Corros. Eng. Sci. Technol., 2011, 46: 212
[67] Asano H, Sawa S, Aritomi M. Long-term integrity of waste package final closure for HLW geological disposal, (II). Applicability of TIG welding method to overpack final closure [J]. J. Nucl. Sci. Technol., 2005, 42: 573
[68] Asano H, Ito T. Long-term integrity of waste package final closure for HLW geological disposal, (V) Applicability of MAG welding method to overpack final closure [J]. J. Nucl. Sci. Technol., 2008, 45: 899
[69] Asano H, Maeda K, Aritomi M. Long-term integrity of waste package final closure for HLW geological disposal, (III) Applicability of Electron Beam Welding to overpack final closure [J]. J. Nucl. Sci. Technol., 2006, 43: 206
[70] Taniguchi N, Suzuki H, Kawasaki M, et al. Propagation behaviour of general and localised corrosion of carbon steel in simulated groundwater under aerobic conditions [J]. Energy Mater., 2011, 6: 117
[71] Liu J Y, Dong L J, Zhang Y, et al. Research progress on sulfide stress corrosion cracking of dissimilar weld joints in oil and gas fields [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 863
[71] 刘久云, 董立谨, 张 言 等. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 863
[1] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[2] 王刚, 李昭, 王涛, 段腾, 杜翠薇. 光伏桩基用钢在新疆土壤中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 987-992.
[3] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[4] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[5] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[6] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[7] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[8] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[9] 许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[10] 罗为平, 罗雪, 石悦婷, 王新潮, 张胜涛, 高放, 李红茹. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[11] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[12] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[13] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[14] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[15] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.