|
|
微生物腐蚀的检测方法和预测模型 |
戚鹏( ), 王鹏, 曾艳, 张盾 |
中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071 |
|
A Review of Detection Methods and Prediction Models for Microbiologically Influenced Corrosion |
QI Peng( ), WANG Peng, ZENG Yan, ZHANG Dun |
Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China |
引用本文:
戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
Peng QI,
Peng WANG,
Yan ZENG,
Dun ZHANG.
A Review of Detection Methods and Prediction Models for Microbiologically Influenced Corrosion[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 602-610.
[1] |
Li C, Wu J J, Zhang D, et al. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone [J]. Water Res., 2023, 232: 119708
|
[2] |
Little B J, Hinks J, Blackwood D J. Microbially influenced corrosion: towards an interdisciplinary perspective on mechanisms [J]. Int. Biodeterior. Biodegrad., 2020, 154: 105062
|
[3] |
Xu D K, Gu T Y, Lovley D R. Microbially mediated metal corrosion [J]. Nat. Rev. Microbiol., 2023, 21: 705
doi: 10.1038/s41579-023-00920-3
pmid: 37344552
|
[4] |
Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
|
[4] |
张 斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析 [J]. 中国腐蚀与防护学报, 2021, 41: 795
|
[5] |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
[5] |
柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278
|
[6] |
Knisz J, Eckert R, Gieg L M, et al. Microbiologically influenced corrosion-more than just microorganisms [J]. FEMS Microbiol. Rev., 2023, 47: fuad041
|
[7] |
Li Z, Huang L Y, Hao W K, et al. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2022, 146: 108130
|
[8] |
Salgar-Chaparro S J, Lepkova K, Pojtanabuntoeng T, et al. Microbiologically influenced corrosion as a function of environmental conditions: a laboratory study using oilfield multispecies biofilms [J]. Corros. Sci., 2020, 169: 108595
|
[9] |
Ma Y, Zhang Y M, Zhang R Y, et al. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view [J]. Appl. Microbiol. Biotechnol., 2020, 104: 515
doi: 10.1007/s00253-019-10184-8
pmid: 31807887
|
[10] |
Li Z X, Lv M Y, Du M. Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211
|
[10] |
李振欣, 吕美英, 杜 敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 211
doi: 10.11902/1005.4537.2021.106
|
[11] |
Kilbane J. Effect of sample storage conditions on oilfield microbiological samples [A]. Corrosion 2014 [C]. San Antonio, Texas, USA, 2014: 3788
|
[12] |
Pots B F M, Kapusta S D, John R C, et al. Improvements on de Waard-Milliams corrosion prediction and applications to corrosion management [A]. Corrosion 2002 [C]. Denver, Colorado, 2002: 02235
|
[13] |
Marciales A, Peralta Y, Haile T, et al. Mechanistic microbiologically influenced corrosion modeling-A review [J]. Corros. Sci., 2019, 146: 99
doi: 10.1016/j.corsci.2018.10.004
|
[14] |
Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
|
[15] |
Beese P, Venzlaff H, Srinivasan J, et al. Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation [J]. Electrochim. Acta, 2013, 105: 239
|
[16] |
Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50: 1169
|
[17] |
Debuy S, Pecastaings S, Bergel A, et al. Oxygen-reducing biocathodes designed with pure cultures of microbial strains isolated from seawater biofilms [J]. Int. Biodeterior. Biodegrad., 2015, 103: 16
|
[18] |
Malard E, Kervadec D, Gil O, et al. Interactions between steels and sulphide-producing bacteria-corrosion of carbon steels and low-alloy steels in natural seawater [J]. Electrochim. Acta, 2008, 54: 8
|
[19] |
Xia D H, Song S Z, Behnamian Y, et al. Review-electrochemical noise applied in corrosion science: theoretical and mathematical models towards quantitative analysis [J]. J. Electrochem. Soc., 2020, 167: 081507
|
[20] |
Chen S Q, Wang P, Zhang D. Corrosion behavior of copper under biofilm of sulfate-reducing bacteria [J]. Corros. Sci., 2014, 87: 407
|
[21] |
Mansfeld F. The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition-a review [J]. Mater. Corros., 2003, 54: 489
|
[22] |
Pourbaix M. Applications of electrochemistry in corrosion science and in practice [J]. Corros. Sci., 1974, 14: 25
|
[23] |
Searson P C, Dawson J L. Analysis of electrochemical noise generated by corroding electrodes under open-circuit conditions [J]. J. Electrochem. Soc., 1988, 135: 1908
|
[24] |
Qi Z H, Jiang T, Zhao M J, et al. Research progress on coatings of active control of microbiological contamination for aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 821
|
[24] |
戚震辉, 江 涛, 赵茂锦 等. 飞机燃油系统微生物污染主动防治涂层研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 821
doi: 10.11902/1005.4537.2022.287
|
[25] |
Pei Y Y, Guan F, Dong X C, et al. Effect of Desulfovibrio Bizertensis SY-1 on corrosive behavior of metal materials under cathodic polarization [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 345
|
[25] |
裴莹莹, 管 方, 董续成 等. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70管线钢的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 345
doi: 10.11902/1005.4537.2023.074
|
[26] |
Carvalho M L, Doma J, Sztyler M, et al. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components [J]. Bioelectrochemistry, 2014, 97: 2
doi: 10.1016/j.bioelechem.2013.12.005
pmid: 24411305
|
[27] |
Liang R X, Aktas D F, Aydin E, et al. Anaerobic biodegradation of alternative fuels and associated biocorrosion of carbon steel in marine environments [J]. Environ. Sci. Technol., 2016, 50: 4844
|
[28] |
Teng F, Guan Y T, Zhu W P. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation [J]. Corros. Sci., 2008, 50: 2816
|
[29] |
Kannan P, Su S S, Mannan M S, et al. A review of characterization and quantification tools for microbiologically influenced corrosion in the oil and gas industry: current and future trends [J]. Ind. Eng. Chem. Res., 2018, 57: 13895
|
[30] |
Wu J J, Xu M, Wang P, et al. Impact of nitrate addition on EH40 steel corrosion in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765
|
[30] |
吴佳佳, 徐 鸣, 王 鹏 等. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 765
|
[31] |
Eckert R B, Skovhus T L. Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion [J]. Int. Biodeterior. Biodegrad., 2018, 126: 169
|
[32] |
Gutarowska B, Celikkol-Aydin S, Bonifay V, et al. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings [J]. Front. Microbiol., 2015, 6: 979
doi: 10.3389/fmicb.2015.00979
pmid: 26483760
|
[33] |
Chen S Q, Hou R Z, Zhang X, et al. The study of riboflavin-mediated indirect electron transfer process in corrosion of EH40 steel induced by Methanococcus maripaludis [J]. Corros. Sci., 2023, 225: 111567
|
[34] |
Pu Y A, Chen S G, Man C, et al. Investigation on the stress corrosion cracking behavior and mechanism of 90/10 copper-nickel alloy under the cooperative effect of tensile stress and Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 225: 111617
|
[35] |
Sharma M, Liu H W, Chen S Q, et al. Effect of selected biocides on microbiologically influenced corrosion caused by Desulfovibrio ferrophilus IS5 [J]. Sci. Rep., 2018, 8: 16620
|
[36] |
Wang D, Yang C T, Zheng B R, et al. Microbiologically influenced corrosion of CoCrFeMnNi high entropy alloy by sulfate-reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 223: 111429
|
[37] |
Wan H H, Zhang T S, Xu Z X, et al. Effect of sulfate reducing bacteria on the galvanic corrosion behavior of X52 carbon steel and 2205 stainless steel bimetallic couple [J]. Corros. Sci., 2023, 212: 110963
|
[38] |
Kagarise C, Vera J R, Eckert R B. The importance of deposit characterization in mitigating UDC and MIC in dead legs [A]. Corrosion 2017 [C]. New Orleans, Louisiana, USA, 2017: 9128
|
[39] |
Haruna K, Obot I B, Saleh T A. Infrared spectroscopy in corrosion research [A]. KayaS, ObotIB, ÖzkirD, et al. Corrosion Science: Theoretical and Practical Applications [M]. New York: Apple Academic Press, 2023: 261
|
[40] |
Dwivedi D, Lepková K, Becker T. Carbon steel corrosion: a review of key surface properties and characterization methods [J]. RSC Adv., 2017, 7: 4580
|
[41] |
Beech I B. Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study [J]. Int. Biodeterior. Biodegrad., 2004, 53: 177
|
[42] |
Cui T Y, Qian H C, Lou Y T, et al. Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM [J]. Corros. Sci., 2022, 206: 110543
|
[43] |
Steele A, Goddard D T, Beech I B. An atomic force microscopy study of the biodeterioration of stainless steel in the presence of bacterial biofilms [J]. Int. Biodeterior. Biodegrad., 1994, 34: 35
|
[44] |
Surman S B, Walker J T, Goddard D T, et al. Comparison of microscope techniques for the examination of biofilms [J]. J. Microbiol. Methods, 1996, 25: 57
|
[45] |
Wei B X, Xu J, Gao L Q, et al. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107: 111
doi: 10.1016/j.jmst.2021.08.023
|
[46] |
Gao Q Y, Zeng W G, Wang H, et al. Effect of fluid scouring on sulfate reducting bacteria induced corrosion of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1087
|
[46] |
高秋英, 曾文广, 王 恒 等. 流体冲刷作用对SRB的腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1087
doi: 10.11902/1005.4537.2022.321
|
[47] |
Xu D K, Xia J, Zhou E Z, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 113: 1
|
[48] |
Yazdi M, Khan F, Abbassi R, et al. A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines [J]. Reliab. Eng. Syst. Safe., 2022, 223: 108474
|
[49] |
Zeng Y, Qi P, Chen J W, et al. Target aided self-assembly of DNA hyperbranched nanostructures for bacterial 16 S ribosomal DNA gene SERS detection [J]. Sensor. Actuat. Chem., 2023, 396: 134423
|
[50] |
Zeng Y, Qi P, Zhou Y N, et al. Multi pathogenic microorganisms determination using DNA composites-encapsulated DNA silver nanocluster/graphene oxide-based system through rolling cycle amplification [J]. Microchim. Acta, 2022, 189: 403
|
[51] |
Zeng Y, Qi P, Wang Y W, et al. DNA pom-pom nanostructure as a multifunctional platform for pathogenic bacteria determination and inactivation [J]. Biosens. Bioelectron., 2021, 177: 112982
|
[52] |
Qi P, Wan Y, Zeng Y, et al. Rapid detection methods for sulfate-reducing bacteria in marine environments [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 387
|
[52] |
戚 鹏, 万 逸, 曾 艳 等. 海洋环境中硫酸盐还原菌的快速测定方法研究 [J]. 中国腐蚀与防护学报, 2019, 39: 387
|
[53] |
Wang Y W, Zhang D, Sun Y, et al. Precise localization and simultaneous bacterial eradication of biofilms based on nanocontainers with successive responsive property toward pH and ATP [J]. ACS Appl. Mater. Interfaces, 2023, 15: 8424
|
[54] |
Wang Y W, Zhang D, Zeng Y, et al. Selective ATP detection via activation of MoS2-based artificial nanozymes inhibited by ZIF-90 nanoparticles [J]. ACS Appl. Nano Mater., 2021, 4: 11545
|
[55] |
Wang Y W, Zhang D, Zeng Y, et al. Target-modulated competitive binding and exonuclease I-powered strategy for the simultaneous and rapid detection of biological targets [J]. Biosens. Bioelectron., 2022, 198: 113817
|
[56] |
Wang Y W, Qi P, Zhang D, et al. Dual-signal viscosity flow paper sensor for ATP detection based on bio-recognition and nanozyme activity regulation of ZIF-90 [J]. Chem. Eng. J., 2024: 148590
|
[57] |
Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals [J]. Curr. Opin. Biotechnol., 2004, 15: 181
|
[58] |
Videla H A, Herrera L K. Microbiologically influenced corrosion: looking to the future [J]. Int. Microbiol., 2005, 8: 169
pmid: 16200495
|
[59] |
Maxwell S. Predicting microbially influenced corrosion (MIC) in seawater injection systems [A]. SPE International Oilfield Corrosion Symposium [C]. Aberdeen, UK, 2006
|
[60] |
Sørensen K B, Thomsen U S, Juhler S, et al. Cost efficient MIC management system based on molecular microbiological methods [A]. Corrosion 2012 [C]. Salt Lake City, Utah, 2012: 1111
|
[61] |
Larsen J, Sørense K B, Juhler S, et al. The application of molecular microbiological methods for early warning of MIC in pipelines [A]. CORROSION 2013 [C]. Orlando, Florida, 2013: 2029
|
[62] |
Hong H P. Application of the stochastic process to pitting corrosion [J]. Corrosion, 1999, 55: 10
|
[63] |
Adumene S, Adedigba S, Khan F, et al. An integrated dynamic failure assessment model for offshore components under microbiologically influenced corrosion [J]. Ocean Eng., 2020, 218: 108082
|
[64] |
Peng C G, Suen S Y, Park J K. Modeling of anaerobic corrosion influenced by sulfate-reducing bacteria [J]. Water Environ. Res., 1994, 66: 707
|
[65] |
von Wolzogen Kühr C A H, Van der Vlugt L S. The graphitization of cast iron as an electrobiochemical process in anaerobic soil [J]. Water, 1934, 18: 147
|
[66] |
Al‐Darbi M M, Agha K, Islam M R. Comprehensive modelling of the pitting biocorrosion of steel [J]. Can. J. Chem. Eng., 2005, 83: 872
|
[67] |
Melchers R E, Wells T. Models for the anaerobic phases of marine immersion corrosion [J]. Corros. Sci., 2006, 48: 1791
|
[68] |
Afanasyev M, van Paassen L, Heimovaara T. A numerical model of controlled bioinduced mineralization in a porous medium to prevent corrosion [A]. EGU General Assembly Conference Abstracts [C]. 2013: EGU2013
|
[69] |
Haile T, Teevens P, Zhu Z. Sulphate-reducing bacteria growth kinetics-based microbiologically influenced corrosion predictive model [J]. J. Pipeline Eng., 2015, 14: 259
|
[70] |
Gu T Y, Zhao K L, Nesic S. A new mechanistic model for MIC based on a biocatalytic cathodic sulfate reduction theory [A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009: 09390
|
[71] |
Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion [J]. J. Microb. Biochem. Technol., 2014, 6: 68
|
[72] |
Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
doi: 10.1016/j.bioelechem.2016.03.003
pmid: 27071053
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|