中国腐蚀与防护学报, 2025, 45(3): 602-610 DOI: 10.11902/1005.4537.2024.117

综合评述

微生物腐蚀的检测方法和预测模型

戚鹏,, 王鹏, 曾艳, 张盾

中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071

A Review of Detection Methods and Prediction Models for Microbiologically Influenced Corrosion

QI Peng,, WANG Peng, ZENG Yan, ZHANG Dun

Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

通讯作者: 戚鹏,E-mail:qipeng@qdio.ac.cn,研究方向为微生物腐蚀监检测

收稿日期: 2024-04-10   修回日期: 2024-05-27  

基金资助: 国家自然科学基金.  42376208

Corresponding authors: QI Peng, E-mail:qipeng@qdio.ac.cn

Received: 2024-04-10   Revised: 2024-05-27  

作者简介 About authors

戚鹏,男,1986年生,博士,副研究员

摘要

综述了生物腐蚀(MIC)的检测方法及预测模型研究进展。MIC的检测方法包括电化学技术、生物分析法、辐射检测法、显微技术和生物传感器。各种检测技术均具有自身的优势和局限性,需要多种技术的配合应用,以全面评价MIC过程。MIC的预测模型可分为基于风险评估、传质过程和电化学机理的模型。考虑MIC系统的复杂性,尚无单一模型可完全预测MIC现象。建议未来发展综合考虑影响因素和机制的模型,解决生物膜内微环境测定问题,以提高MIC预测的准确性。

关键词: 微生物腐蚀 ; 生物膜 ; 检测 ; 预测模型 ; 风险评估

Abstract

Microbiologically influenced corrosion (MIC) is a prevalent and serious form of metal corrosion that can cause substantial economic loss. Due to the complexity of the MIC process, developing techniques for detecting and controlling MIC is a key challenge in industrial corrosion science. This paper systematically reviews the research progress of MIC detection methods and prediction models. The detection methods of MIC include electrochemical techniques, bioanalytical methods, radiation detection, microscopy, and biosensing approaches. Each detection technique has its own merits and limitations, and the cooperative application of multiple techniques is needed to comprehensively evaluate the MIC process. The prediction models of MIC can be categorized into those based on risk assessment-based, mass transfer-based, and comprehensive electrochemistry-based models. Given the complexity of MIC systems, no single model has yet been capable of fully predicting MIC phenomena. It is recommended that future efforts be directed toward developing integrated models that account for influential factors and mechanisms, resolving measurements of the microenvironment within biofilms, in order to enhance the accuracy of MIC prediction.

Keywords: microbiologically influenced corrosion ; biofilm ; detection ; prediction models ; risk assessment

PDF (7030KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型. 中国腐蚀与防护学报[J], 2025, 45(3): 602-610 DOI:10.11902/1005.4537.2024.117

QI Peng, WANG Peng, ZENG Yan, ZHANG Dun. A Review of Detection Methods and Prediction Models for Microbiologically Influenced Corrosion. Journal of Chinese Society for Corrosion and Protection[J], 2025, 45(3): 602-610 DOI:10.11902/1005.4537.2024.117

生物腐蚀(MIC)是指由微生物或其代谢产物引起或加速的金属或其他材料的腐蚀过程,是一种普遍存在的严重腐蚀形式,广泛发生在石油、天然气、化工、海洋和水处理等领域,可对设备和环境造成重大损失和危害[1~5]。MIC可导致巨大的经济损失,约占全部腐蚀损失的20%。因此,MIC的检测与控制是工业腐蚀科学面临的核心难题。

在水环境中的异质材料表面可以很快形成生物膜细菌聚集体。胞外聚合物(EPS)和微生物细胞组成的生物膜可以为微生物提供有利的生存环境,抵御外部恶劣环境的干扰。而且,生物膜内部相对隔绝的环境有利于微生物的代谢活动,从而改变生物膜内的局部微环境,影响腐蚀机理[6~8]。此外,生物膜内菌体体系复杂,常存在多种微生物,如硫酸盐还原菌(SRB)、铁氧化菌(IOB)、锰氧化菌(MOB)、硫酸盐氧化菌(SOB)、酸生成菌(IPB)等,微生物之间的协同共生也会改变生物膜内的环境参数,进而加速腐蚀过程[9,10]。鉴于MIC过程的复杂性,开发MIC的检测与控制技术是工业腐蚀科学面临的核心难题。

近年来,虽然研究人员对MIC机理进行了大量研究,但由于MIC系统包含多种微生物、受多因素影响,其腐蚀机制尚未完全阐明。针对MIC过程的危害性和不确定性,采用可靠的检测技术对其进行检测显得尤为重要[9,11]。近年来,许多新技术应用于MIC检测,如电化学技术、显微技术、生物分析技术等。这些技术可以检测腐蚀电化学行为、直接观察样品变化、分析微生物种类等,为研究MIC过程提供重要信息。但是,各类技术手段也存在自身的局限性,如检测范围小、分辨率有限、需要外界扰动等。因此,需要多种技术的联合应用才能对复杂的MIC系统进行全面的表征。

预测和模拟MIC的现象和机制,是有效诊断和防治MIC的重要手段,也是腐蚀科学和工程的热点和难点问题。为了预测和模拟MIC,许多学者提出了不同类型的模型,从不同的角度和层次描述和解释了MIC的影响因素和过程,为MIC的研究和应用提供了有价值的信息和建议[12,13]。然而,由于MIC的复杂性和多样性,没有一个模型能够完全解释和预测MIC的现象,不同类型的模型各有优缺点和适用范围,需要根据不同的目的和条件来选择合适的模型,或者结合多种模型来提高MIC的诊断和防治的效果。

本文对MIC的各种检测技术和已有的预测模型进行系统综述,旨在总结现有MIC检测手段的优劣势,分析各类MIC预测模型的优势与不足,为选择MIC检测手段和预测模型提供指导。本文有助于工业界和学术界更好地认识当前MIC检测技术和预测模型的研究状况,为开发MIC的检测与控制技术提供参考。

1 MIC的检测方法

1.1 电化学检测法

电化学检测法是通过测量样品的电化学反应来监测和表征金属腐蚀的过程和机理。常用的电化学方法包括开路电位法、电化学噪声法、线性极化电阻法、动态极化法和电化学阻抗谱法等。开路电位法的原理是测量金属样品与参比电极之间的稳态电位差,来反映样品在腐蚀介质中的电化学行为。电化学噪声法通过检测电位和电流的随机扰动,可以判断腐蚀类型是均匀腐蚀还是局部腐蚀。线性极化电阻法给样品施加很小的电位扰动,测量对应电流变化,由此监测瞬时腐蚀速率。动态极化法在稳态条件下施加较大的电位扰动,考察整个腐蚀反应过程。电化学阻抗谱法通过施加交变电位,测量响应电流,获得电化学反应机理信息[14~19]

丝束电极,又称微电极阵列,是由规则排列的电极丝组成的复合电极。微电极既能作为大面积电极使用,给出平均信号,又能作为独立探头,测试局部参数,揭示材料表面腐蚀过程的不均匀性。因此,丝束电极技术在MIC研究中广泛应用。本研究团队利用丝束电极监测SRB生长周期中Cu的整体和局部电化学过程,随着浸泡时间增加,在SRB指数生长期,最大电流密度值Imax从0.21 μA·cm-2增加到0.87 μA·cm-2,在稳定期稳定在0.70 μA·cm-2,然后在衰亡期下降到0.17 μA·cm-2。结果表明,Imax与SRB的代谢过程相关(见图1)。此外,SRB生长过程中,阳极位置随浸泡时间变化[20]

图1

图1   基于丝束电极测试SRB引起的腐蚀状态[20]

Fig.1   Current distribution maps of wire beam electrode after immersion in SRB medium for 1 d (a), 3 d (b), 5 d (c), 7 d (d), 9 d (e), 11 d (f) and 13 d (g) and digital photo of wire beam electrode (h)[20]


电化学检测法的优势在于操作简便、可以实现连续监测,已广泛应用于评价金属材料电化学行为、判断腐蚀类型与位置、动态监测腐蚀速率以及考究腐蚀机理。但是电化学方法也存在一些局限性,如部分方法需要施加外部扰动,可能影响稳态过程;数据分析和结果解释复杂,对局部腐蚀的监测效果较差,重复性存在一定问题[21~23]

1.2 生物分析法

MIC的特点是微生物群落与金属材料之间的复杂相互作用,准确分析微生物群落的组成对于理解MIC的发生机制至关重要。微生物群落不仅在种类上多种多样,而且在不同的环境条件下展现出不同的生态功能,即通过特定的代谢途径影响金属材料的腐蚀过程[5,24,25]。因此,需要对每个特定环境的微生物群落进行详细分析,以便为MIC控制提供针对性的策略。生物分析法是通过分析样品中微生物的种类、数量和代谢活性来表征MIC过程。这类方法主要包括基因组学分析和代谢组学分析。基因组学分析如PCR和基因测序,可以识别样品中的微生物类型,定量分析不同微生物的相对丰度,为判断MIC相关微生物提供依据。代谢组学通过色谱-质谱等技术分析样品中的化学成分,可以揭示微生物群落的代谢通路和活性[26~29]。本研究团队采用高通量测序法分析了天然海水中硝酸盐添加对EH40钢试样表面腐蚀产物内微生物群落结构的差异。研究发现,在所有海水体系中,EH40钢表面微生物群落丰度最高的属为Cupriavidus,其次是Pelomonas,这两个属的细菌可进行有氧呼吸。在未添加硝酸盐的海水中,试样表面微生物群落结构中的硝酸盐还原菌属主要是RalstoniaSulfurimonas。添加0.1和1 mmol/L硝酸盐后,硝酸盐还原菌的优势菌属不变。当添加量为10 mmol/L硝酸盐时,除了RalstoniaSulfurimonas外,优势菌属中还出现了Thiomicrospira属。进一步增加添加量至100 mmol/L硝酸盐时,硝酸盐还原菌属主要是RalstoniaThiomicrospiraPseudomonas。硝酸盐的添加不仅导致了硝酸盐还原菌属的变化,还影响其丰度(见图2)[30]

图2

图2   EH40钢在添加不同浓度硝酸盐的海水中浸泡12周后表面微生物群落在属分类水平上的比较[30]

Fig.2   Histogram of microbial communities on EH40 steel immersed for 12 weeks in seawater containing different concentrations of nitrate[30]


生物分析法可以研究MIC过程中微生物群落的遗传多样性和功能特性,从而理解微生物与金属材料相互作用的复杂性。DNA测序技术可以识别和量化难以培养的微生物种群,而宏基因组学则提供了群落中所有基因的全面视图,揭示了微生物群落的代谢潜力和生态功能。此外,代谢组学技术的应用,通过分析微生物群落的代谢产物,进一步补充了对微生物活动状态的理解,为评估微生物腐蚀的生物化学机制提供了直接的代谢证据。但是也存在一些局限性,如需要优化核酸提取和化学成分分析的样品前处理方法,数据处理和解释复杂,需要专业知识,设备和试剂耗材成本高[31,32]

1.3 辐射检测法

辐射检测技术通过利用X射线、紫外线等电磁辐射的吸收、衍射、荧光等效应来分析样品的化学组成和结构。常用技术包括X射线衍射(XRD)、X射线光电子能谱(XPS)、能量色散谱(EDS)、Raman光谱和紫外可见光谱分析(UV-vis)。XRD可用于评估样品的晶体结构和化学组成,揭示不同环境下的相变和成分信息,为腐蚀机理和速率提供证据。XPS可分析样品表面薄层的化学状态及相对组成,评价微生物诱导的表面化学变化。EDS可用于比较基本元素组成,识别腐蚀沉积物,结合电子显微镜评估微生物学影响。Raman光谱和UV-vis可用于表征无机腐蚀产物和有机物细胞外聚合物的组成[33~36]。刘宏芳研究团队[37]在研究SRB对富集人工海水中2205不锈钢和X52碳钢之间电化学腐蚀的研究中,采用XPS技术研究了去除生物膜后2205钝化层。研究表明,在无菌和SRB培养基中,2205不锈钢和X52碳钢耦合后,表面O2-/OH-和Fe3+/Fe2+的比率均有所下降。O2-和Fe3+含量的减少可能是由于Fe(III)氧化物的减少造成(见图3)。

图3

图3   去除生物膜后2205不锈钢表面钝化层的O 1s、Fe 2p XPS谱图、O2-/OH-和Fe3+/Fe2+的相应比率[37]

Fig.3   XPS fine peaks of O 1s (a) and Fe 2p (b), and corresponding ratios of O2-/OH- and Fe3+/Fe2+ for the passivation film of 2205 stainless steel after removing the surface biofilm (c)[37]


辐射检测法可以对MIC过程中腐蚀产物和生物膜的化学成分进行表征,揭示MIC的化学过程。它们的优点是原理简单,可以快速扫描样品化学信息[38~40]。但也存在一些局限性。如XRD成本低但分辨率有限,XPS可评估成分但空间覆盖有限,EDS可提供微观信息但需要复杂数据分析。综合运用这些技术可全面评估微生物腐蚀过程中的样品化学变化。

1.4 显微技术

显微技术的共同原理是通过各种显微仪器直接观察样品的形貌、组织结构、微生物分布等信息,从而直接观察样品表面变化、生物膜形成及微生物分布情况,对MIC过程进行表征。常用的显微镜技术包括扫描电子显微镜(SEM)、环境扫描电子显微镜(ESEM)、原子力显微镜(AFM)和共聚焦扫描激光显微镜(CLSM)。SEM可快速获得高分辨率的金属基体微观形态图像,直接观察识别微生物活性对腐蚀的影响,但可能会对脆弱的生物样本完整性造成一定损伤。AFM是一种灵敏的表面形貌和力学性质定量分析技术,可精确评估异质性生物膜对金属基体的粘附力大小和腐蚀缺陷尺寸,但其取样和分析范围较小。光学显微镜操作简便快速,可用于现场直接评估腐蚀表面情况,但分辨率较低,获得的信息不够明确直接。CLSM可非破坏性地获得生物膜三维结构和腐蚀微观形貌的深度信息,但需要复杂的样本制备过程和较高的操作技术[41~47]

显微镜技术是微生物腐蚀研究中最常用的表征手段之一。但这类技术也存在一些内在的局限:首先,显微技术的观察范围有限,仅能提供金属样品局部区域的信息,难以反映整体腐蚀态势。其次,部分显微技术需要对样本进行复杂的前处理或制备,这可能会对脆弱的生物样品完整性产生一定的破坏或影响。再者,一些高分辨率的显微技术操作较为复杂,需要专业的实验人员进行。最后,部分显微系统需要工作在真空条件下,仪器和维护成本也非常昂贵[45,48]

1.5 生物传感法

生物传感器是一门由化学、物理学、生物学、材料学等交叉形成的一门学科,是介于信息学和生物技术之间新的研究热点,具有特异性高,灵敏度高,分析速度快,准确度高,成本低廉等优点,在食品检测、生态环境科学、医药科学等领域发挥了不容忽视的作用。本研究团队针对微生物腐蚀检测的难题,开发了一系列针对微生物体系的生物传感方法。首先,从微生物特异性识别角度出发,针对不同应用场景开发了针对腐蚀微生物的快速传感方法,揭示了其对腐蚀微生物细胞结构、代谢活性和遗传序列的识别模式和作用机制,实现了典型腐蚀微生物的快速检测[49~52]。此外,针对材料表面生物膜内腐蚀微生物的代谢活性难以测定的难题,开发了适用于生物膜体系的腐蚀微生物活性的生物传感方法。具体内容包括:开发了高柔韧性全固态离子选择性微探针,采用热力学驱动的电位测试模式,通过引入石墨烯固态转换层,实现了对活性分子识别过程的界面离子/电子快速转换,摆脱了内充液对电极基底尺寸和韧性的束缚;开发了基于MOF靶向裂解及酶释放的便携式活性试纸条,建立了靶标分子浓度与体系颜色/扩散性的密切关联,实现了生物膜内靶标分子的可视化测定(见图4)[53~56]

图4

图4   基于MOFs调节水凝胶黏度和纳米酶活性的ATP检测试纸条的构建原理图[53]

Fig.4   Schematic diagrams of the preparation of ChoA@ZIF-90 (a) and paper-based ATP assay based on MOFs regulated degradation of high viscosity hydrogel and nanozyme reactivation for ATP detection (b)[53]


生物传感技术作为一种先进的分析工具,在微生物活动和环境参数的原位监测方面展现出显著的效能,能够精确捕捉生物膜内微生物代谢活动和腐蚀过程的动态变化。生物传感技术能够提供较高的空间分辨率,这对于理解微生物群落内部结构和功能分布至关重要。尽管目前可以用于生物膜微环境检测的生物传感器仍然较少,需要针对不同应用场景开发特定的传感器,该技术实现过程较为复杂,需要对构建和测试过程不断优化。但凭借其高特异性、高灵敏度、快速分析、高准确度以及低成本等优势,生物传感技术的研究需求日益增长。

综合而言,电化学技术在实时监测和材料失效表征方面具有优势,但无法测试生物膜内的微环境状态,且对局部腐蚀的检测能力有限;显微技术能够提供直观的形貌信息,辐射技术在化学成分分析方面具有高信息量,但这两类方法受限于观察范围和可能对样本造成损伤,不便于开展实时观测;生物分析技术能够深入到微生物层面,但需要专业的设备和分析人员,不便于开展现场分析;生物传感技术在快速检测和成本效益方面具有显著优势,但可能需要针对特定应用进行开发。在选择MIC检测手段时,需要根据具体的研究目的、条件和成本效益比进行综合考虑,有时需要多种技术的联合应用来全面评估MIC现象。

2 MIC预测模型

按照模型的特点和方法进行分类和排序,目前已报道的MIC预测模型可分为基于风险评估的模型、基于传质过程控制的模型和基于电化学腐蚀机理的综合模型3种类型[13,57,58]

2.1 基于风险评估的模型

Maxwell等[59]提出了一个基于四个因素(硫化物存在、氧气侵入、管道清理频率和老化程度)来评估SRB致腐蚀率的模型。该定性模型用一个四维的矩阵来表示这些因素的组合,每个单元格对应一个腐蚀等级。该模型的优点是能够预测MIC的可能性,缺点是不能准确地估计腐蚀进展。2012年,Sorensen等[60]提出用数学公式分三步来计算MIC的风险指数(RI)和最大腐蚀坑生成速率。第一步结合qPCR技术监测SRB,硫酸盐还原古菌(SRA)和甲烷生成菌(MET)的数量,并利用每个菌种的体积活性计算MIC风险因子。第二步计算基于上述微生物的最大腐蚀坑生成速率。最后,根据上述两项指标评估MIC风险和采取缓释措施。研究表明,在细菌混合菌落中,腐蚀速率增加。在此基础上,该团队又提出通过RT-qPCR技术区分微生物的总数量和活性数量,可以更灵敏地评估MIC风险。与仅用qPCR技术相比,该模型可以更早期预测管线MIC[61]

此外,微生物诱导腐蚀的点蚀形成和生长过程具有随机特性,因此可以采用动态概率模型,如Markov网络,Poisson回归,Petri网和Bayesian网络等方法来预测MIC的发生[62]。在很长一段时间,基于概率学的模型被用于模拟点蚀的随机生成和生长,但这些模型均没有考虑微生物对腐蚀速率和故障概率的影响。2020年,Adumene等[63]提出了一种集成Bayesian网络-Markov方法的预测模型,特别关注了操作参数和SRB对微生物诱导腐蚀速率的影响,以及微生物诱导腐蚀速率对长期曝露管道故障可能性的影响,用于预测微生物诱导内部腐蚀速率、故障概率以及未来腐蚀坑洞深度分布,并评估其对近海系统结构完整性的影响。微生物诱导腐蚀的影响因素采用Bayesian网络表示,以捕捉其动态性、非线性依赖性和相互依赖性。根据关键腐蚀坑洞深度状态,采用Markov过程估计近海系统的故障特征和未来微生物诱导腐蚀坑洞深度分布。

基于风险评估的模型主要用来评估MIC的可能性和危害程度,而不是具体的腐蚀速率的模型,考虑了一些影响MIC的因素,如微生物的种类、数量、活性、环境条件等,但没有涉及电化学和传质过程。这类模型的优点是可以快速地对MIC的风险进行评估,为腐蚀管理和防护提供参考。它们的缺点是不能提供具体的腐蚀速率和机理,也不能考虑电化学和传质过程的影响,因此精度和适用性有限。

2.2 基于传质过程控制的模型

基于对阴极去极化机理的理解,Peng等[64]提出结合Monod方程、硫酸盐的传质方程,建立预测MIC腐蚀速率的数学模型。该模型考虑了SRB在金属表面的电化学作用,以及扩散、反应和质量传递等过程,能够预测腐蚀坑的形成和发展的3个阶段,但是需要很多参数和假设,且忽略了生物膜的影响。文献[65,66]也提出了基于阴极去极化机理的数学模型,考虑了硫酸盐在生物膜内的扩散和消耗,描述了腐蚀速率与SRB硫酸盐消耗速率和点深度变化的依赖性,并提出由于硫酸盐扩散的限制,点蚀坑经初期的快速生长后进入缓慢稳态生长阶段。

此外,Melchers和Wells[67]提出的模型将MIC过程分为瞬态和准稳态两阶段建模。第一阶段利用Fick扩散方程描述营养物质的瞬态扩散。第二阶段近似为准稳态,腐蚀速率与营养物质浓度和铁锈层扩散速率成正比。Afanasyev等[68]提出通过活性传质方程描述固体、生物膜和溶液三相的反应过程,进而建立MIC模型,该模型考虑了各相界面之间物质传递和反应,预测了生物矿化对MIC的抑制作用。

尽管以上模型从不同的角度构建了基于传质过程控制的模型,但均没有考虑MIC过程中生物膜的动态生长过程。2015年,Haile等[69]提出利用双基质Monod方程描述SRB的生长动力学,进而建立MIC腐蚀速率模型,该模型考虑了生物量增长、剥落和生物膜的参数,可以预测SRB附着量和腐蚀率的变化趋势。

2.3 基于电化学腐蚀机理的综合模型

该类模型综合考虑了更多的影响MIC的因素和机制,如生物膜的形成和变化、电化学和传质过程、微生物的种类、数量、活性、代谢产物等,以及环境条件的变化的模型。Gu等[70]提出了基于SRB介导的生物催化阴极硫酸盐还原理论的MIC腐蚀模型,该模型提出电活性SRB诱导的腐蚀过程是微生物的外源呼吸过程导致的,利用Butler-Volmer方程描述电荷传递限制,结合营养盐在生物膜内的传质方程,重点考虑了生物膜-金属间的反应动力学和营养物质在生物膜内的传质过程。在此基础上,又考虑了APB产生的腐蚀性有机酸对MIC的影响,使模型能够预测更高的腐蚀率[71]。Xu等[72]提出了同样基于腐蚀电化学原理的SRB和APB的协同作用MIC模型,预测了最坏情况下的MIC点蚀,通过假设存在侵蚀性生物膜,并简化了生物膜内硫酸盐的扩散和消耗过程,预测了最坏情况下MIC的点蚀速率。

不同类型的MIC预测模型各有优缺点和适用范围,没有一个模型能够完全解释和预测MIC的现象。总体而言,基于风险评估的模型主要关注于快速评估MIC的风险,其优点在于能够快速提供MIC风险的概览,但无法提供关于腐蚀速率和机理的详细信息。基于传质过程控制的模型则更进一步,考虑了微生物在金属表面的电化学作用以及与腐蚀过程相关的传质现象,能够预测腐蚀坑的形成和发展,但需要大量的参数和假设,并且可能忽略了生物膜的动态变化。基于电化学腐蚀机理的模型综合了生物膜的形成和变化、电化学和传质过程以及微生物的代谢活动等多种因素,能够提供更为准确和详细的腐蚀预测,但需要大量的参数输入和解决生物膜内微环境因子的测定问题。因此,需要根据不同的目的和条件来选择合适的模型,或者结合多种模型来提高MIC的诊断和防治的效果。未来的研究方向和建议有以下几点:(1) 发展更多的基于机理的综合模型,以综合考虑所有影响MIC的因素和机制,提供最准确和最完善的腐蚀预测和模拟。(2) 改进现有的模型的方法和技术,以提高模型的求解效率和精度,降低模型的计算量和计算时间,增加模型的稳定性和可靠性。(3) 解决生物膜内微环境因子的测定问题,获取更多的参数和数据,以描述生物膜的特性和变化。微生物腐蚀是发生在生物膜下的腐蚀过程,而由于生物膜内微环境因子测定方法的缺失,导致无法获得生物膜内微环境的变化规律,仅仅能通过推测估算生物膜内的微环境。因此,为了更好的解释微生物腐蚀机理,建立可靠的预测模型,必须要解决生物膜内微环境因子的测定问题。

3 结论

本综述系统阐述了MIC的检测技术和预测模型研究进展。MIC检测技术包括电化学、生物分析、辐射检测、显微观察和生物传感等,各技术手段优势互补,联合应用可提高MIC监测效果。MIC预测模型包括基于风险评估、传质过程和电化学机制的模型,每种模型均考虑了影响MIC的部分因素,但尚无单一模型可完全解释MIC机制。未来的MIC检测研究将聚焦于快速现场检测技术的创新,致力于构建符合现场应用要求的检测技术,以实现快速准确地进行现场监测,并评估MIC相关的风险。此外,微生物预测模型的发展趋势将转向构建基于机理的综合性模型,并通过优化关键参数提升模型的效率和准确度,增强模型的稳定性和可靠性。事实上,这两方面研究工作的推进均需解决生物膜内微环境因素的测定问题,以便更为精确的研究生物膜的特征及其演变过程。本综述对已有MIC检测和建模研究进行全面综述,有助于微生物腐蚀科学的发展,也为工业界开发MIC的检测与控制技术提供重要参考。

参考文献

Li C, Wu J J, Zhang D, et al.

Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone

[J]. Water Res., 2023, 232: 119708

[本文引用: 1]

Little B J, Hinks J, Blackwood D J.

Microbially influenced corrosion: towards an interdisciplinary perspective on mechanisms

[J]. Int. Biodeterior. Biodegrad., 2020, 154: 105062

Xu D K, Gu T Y, Lovley D R.

Microbially mediated metal corrosion

[J]. Nat. Rev. Microbiol., 2023, 21: 705

DOI      PMID     

A wide diversity of microorganisms, typically growing as biofilms, has been implicated in corrosion, a multi-trillion dollar a year problem. Aerobic microorganisms establish conditions that promote metal corrosion, but most corrosion has been attributed to anaerobes. Microbially produced organic acids, sulfide and extracellular hydrogenases can accelerate metallic iron (Fe) oxidation coupled to hydrogen (H) production, as can respiratory anaerobes consuming H as an electron donor. Some bacteria and archaea directly accept electrons from Fe to support anaerobic respiration, often with c-type cytochromes as the apparent outer-surface electrical contact with the metal. Functional genetic studies are beginning to define corrosion mechanisms more rigorously. Omics studies are revealing which microorganisms are associated with corrosion, but new strategies for recovering corrosive microorganisms in culture are required to evaluate corrosive capabilities and mechanisms. Interdisciplinary studies of the interactions among microorganisms and between microorganisms and metals in corrosive biofilms show promise for developing new technologies to detect and prevent corrosion. In this Review, we explore the role of microorganisms in metal corrosion and discuss potential ways to mitigate it.© 2023. Springer Nature Limited.

Zhang F, Wang H T, He Y J, et al.

Case analysis of microbial corrosion in product oil pipeline

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795

张 斐, 王海涛, 何勇君 .

成品油输送管道微生物腐蚀案例分析

[J]. 中国腐蚀与防护学报, 2021, 41: 795

Ke N, Ni Y Y, He J Q, et al.

Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms

[J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278

[本文引用: 2]

柯 楠, 倪莹莹, 何嘉淇 .

微生物胞外聚合物引起的金属腐蚀的研究进展

[J]. 中国腐蚀与防护学报, 2024, 44: 278

[本文引用: 2]

Knisz J, Eckert R, Gieg L M, et al.

Microbiologically influenced corrosion-more than just microorganisms

[J]. FEMS Microbiol. Rev., 2023, 47: fuad041

[本文引用: 1]

Li Z, Huang L Y, Hao W K, et al.

Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm

[J]. Bioelectrochemistry, 2022, 146: 108130

Salgar-Chaparro S J, Lepkova K, Pojtanabuntoeng T, et al.

Microbiologically influenced corrosion as a function of environmental conditions: a laboratory study using oilfield multispecies biofilms

[J]. Corros. Sci., 2020, 169: 108595

[本文引用: 1]

Ma Y, Zhang Y M, Zhang R Y, et al.

Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view

[J]. Appl. Microbiol. Biotechnol., 2020, 104: 515

DOI      PMID      [本文引用: 2]

Marine is the harshest corrosive environment where almost all marine underwater equipment and facilities undergo corrosion caused by marine microorganisms. With the development of marine resources globally, the marine engineering and relevant infrastructures have increased exponentially. Microbiologically influenced corrosion (MIC) leads to severe safety accidents and great economic losses. The specific aggregation of corrosive microbial communities and their interactions with materials conform to a typical ecological adaptation mechanism. On the one hand, corrosive biofilms in the marine environment selectively colonize on a specific steel substrate by utilizing their complex community composition and various extracellular polymeric substances; on the other hand, the elemental composition and surface microstructure of different engineering steels affect the microbial community and corrosive process. MIC in the marine environment is a dynamic process evolving with the formation of corrosive biofilms and corrosion products. In this mini-review, the interactions between corrosive biofilm and steel substrates are explored and discussed, especially those conducted in situ in the marine environment. Herein, the important role of iron in the dynamic process of marine corrosion is highlighted.

Li Z X, Lv M Y, Du M.

Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211

[本文引用: 1]

李振欣, 吕美英, 杜 敏.

海水环境中组合电位极化对铁氧化菌腐蚀的影响

[J]. 中国腐蚀与防护学报, 2022, 42: 211

DOI      [本文引用: 1]

采用电化学测试、扫描电镜、激光共聚焦显微镜、Raman光谱等手段研究了-850 mV (vs. SCE,下同) 转-1050 mV和-1050 mV转-850 mV组合电位阴极极化对X65钢在含铁氧化菌 (IOB) 的海水中腐蚀的影响。结果表明:两种组合电位极化都对IOB腐蚀有一定抑制作用;极化与开路电位下X65钢腐蚀产物种类差别不大,含量有区别。-1050 mV极化可以抑制IOB附着但不能完全去除已形成的生物膜,这是-1050 mV转-850 mV极化保护效果优于-850 mV转-1050 mV极化的原因。

Kilbane J.

Effect of sample storage conditions on oilfield microbiological samples

[A]. Corrosion 2014 [C]. San Antonio, Texas, USA, 2014: 3788

[本文引用: 1]

Pots B F M, Kapusta S D, John R C, et al.

Improvements on de Waard-Milliams corrosion prediction and applications to corrosion management

[A]. Corrosion 2002 [C]. Denver, Colorado, 2002: 02235

[本文引用: 1]

Marciales A, Peralta Y, Haile T, et al.

Mechanistic microbiologically influenced corrosion modeling-A review

[J]. Corros. Sci., 2019, 146: 99

DOI      [本文引用: 2]

At present, most Microbiologically Influenced Corrosion (MIC) models used in the petroleum industry are risk based, and predict the likelihood of MIC. It is imperative that the industry adopts mechanistic models to accurately quantify MIC in pipes/facilities. This paper summarizes the findings of a literature review of mechanistic MIC models available in the public domain. The results indicated that most of the models reviewed consider Sulphate Reducing Bacteria (SRB) as the main players in MIC, and very few models consider biofllm formation and transport phenomena. Furthermore, no models were found to accurately correlate sessile and planktonic bacteria.

Batmanghelich F, Li L, Seo Y.

Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron

[J]. Corros. Sci., 2017, 121: 94

[本文引用: 1]

Beese P, Venzlaff H, Srinivasan J, et al.

Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation

[J]. Electrochim. Acta, 2013, 105: 239

Castaneda H, Benetton X D.

SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions

[J]. Corros. Sci., 2008, 50: 1169

Debuy S, Pecastaings S, Bergel A, et al.

Oxygen-reducing biocathodes designed with pure cultures of microbial strains isolated from seawater biofilms

[J]. Int. Biodeterior. Biodegrad., 2015, 103: 16

Malard E, Kervadec D, Gil O, et al.

Interactions between steels and sulphide-producing bacteria-corrosion of carbon steels and low-alloy steels in natural seawater

[J]. Electrochim. Acta, 2008, 54: 8

Xia D H, Song S Z, Behnamian Y, et al.

Review-electrochemical noise applied in corrosion science: theoretical and mathematical models towards quantitative analysis

[J]. J. Electrochem. Soc., 2020, 167: 081507

[本文引用: 1]

Chen S Q, Wang P, Zhang D.

Corrosion behavior of copper under biofilm of sulfate-reducing bacteria

[J]. Corros. Sci., 2014, 87: 407

[本文引用: 3]

Mansfeld F.

The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition-a review

[J]. Mater. Corros., 2003, 54: 489

[本文引用: 1]

Pourbaix M.

Applications of electrochemistry in corrosion science and in practice

[J]. Corros. Sci., 1974, 14: 25

Searson P C, Dawson J L.

Analysis of electrochemical noise generated by corroding electrodes under open-circuit conditions

[J]. J. Electrochem. Soc., 1988, 135: 1908

[本文引用: 1]

Qi Z H, Jiang T, Zhao M J, et al.

Research progress on coatings of active control of microbiological contamination for aircraft fuel system

[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 821

[本文引用: 1]

戚震辉, 江 涛, 赵茂锦 .

飞机燃油系统微生物污染主动防治涂层研究进展

[J]. 中国腐蚀与防护学报, 2023, 43: 821

DOI      [本文引用: 1]

基于航空事业对燃油系统微生物防治的的迫切需求,针对“燃油系统内部积水带来的微生物污染”的关键问题,将生物-材料-电子进行多学科交叉融合,拟以微生物胞外电子传递这一广泛存在的生物现象为切入点,围绕“水带来的微生物污染”与“新材料涂层如何主动杀菌”的关系进行探究,旨在建立安全高效的燃油系统微生物防治策略以保障飞机安全运行,利用微生物胞外电子传递作为电子来源,成为微电池涂层抑菌和生成ROS的关键,综述如何利用金属腐蚀电化学提供“主动”抗菌功能性涂层的设计原理和重要实验指导,同时也为其他涉及燃油系统微生物防治的研究提供新思路、开拓新途径。

Pei Y Y, Guan F, Dong X C, et al.

Effect of Desulfovibrio Bizertensis SY-1 on corrosive behavior of metal materials under cathodic polarization

[J]. J. Chin. Soc. Corros. Prot., 2024, 44: 345

[本文引用: 1]

裴莹莹, 管 方, 董续成 .

Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70管线钢的腐蚀行为研究

[J]. 中国腐蚀与防护学报, 2024, 44: 345

DOI      [本文引用: 1]

研究了从浸泡在中国南海的钢铁锈层中分离的腐蚀性硫酸盐还原菌Desulfovibrio bizertensis SY-1在-0.85和-1.05 V vs. SCE阴极极化电位下对X70管线钢腐蚀行为的影响。结果表明,-0.85 V vs. SCE电位尚不能有效抑制Desulfovibrio bizertensis SY-1细胞的生长与附着,同时试片表面也检测到了特征的四方硫铁矿和针铁矿的Raman峰。-1.05 V vs. SCE阴极极化电位能够有效抑制浮游Desulfovibrio bizertensis SY-1细胞的生长和代谢过程,腐蚀产物以磁铁矿为主。失重数据也表明,在-1.05 V vs. SCE电位下试片失重与无菌条件基本一致,且在该电位下最大点蚀坑深度与无极化条件相比减少了75%。该研究为含有Desulfovibrio bizertensis SY-1环境的阴极保护电位选择和微生物与极化电位的相互作用研究提供了参考。

Carvalho M L, Doma J, Sztyler M, et al.

The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components

[J]. Bioelectrochemistry, 2014, 97: 2

DOI      PMID      [本文引用: 1]

The present paper reports the on-line monitoring of corrosion behavior of the CuNi 70:30 and Al brass alloys exposed to seawater and complementary offline microbiological analyses. An electrochemical equipment with sensors specifically set for industrial application and suitable to estimate the corrosion (by linear polarization resistance technique), the biofilm growth (by the BIOX electrochemical probe), the chlorination treatment and other physical-chemical parameters of the water has been used for the on-line monitoring. In order to identify and better characterize the bacteria community present on copper alloys, tube samples were collected after a long period (1year) and short period (2days) of exposition to treated natural seawater (TNSW) and natural seawater (NSW). From the collected samples, molecular techniques such as DNA extraction, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and identification by sequencing were performed to better characterize and identify the microbial biodiversity present in the samples. The monitoring data confirmed the significant role played by biofouling deposition against the passivity of these Cu alloys in seawater and the positive influence of antifouling treatments based on low level dosages. Molecular analysis indicated biodiversity with the presence of Marinobacter, Alteromonas and Pseudomonas species. Copyright © 2013 Elsevier B.V. All rights reserved.

Liang R X, Aktas D F, Aydin E, et al.

Anaerobic biodegradation of alternative fuels and associated biocorrosion of carbon steel in marine environments

[J]. Environ. Sci. Technol., 2016, 50: 4844

Teng F, Guan Y T, Zhu W P.

Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation

[J]. Corros. Sci., 2008, 50: 2816

Kannan P, Su S S, Mannan M S, et al.

A review of characterization and quantification tools for microbiologically influenced corrosion in the oil and gas industry: current and future trends

[J]. Ind. Eng. Chem. Res., 2018, 57: 13895

[本文引用: 1]

Wu J J, Xu M, Wang P, et al.

Impact of nitrate addition on EH40 steel corrosion in natural seawater

[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765

[本文引用: 3]

吴佳佳, 徐 鸣, 王 鹏 .

天然海水中硝酸盐的添加对EH40钢腐蚀的影响

[J]. 中国腐蚀与防护学报, 2023, 43: 765

[本文引用: 3]

Eckert R B, Skovhus T L.

Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion

[J]. Int. Biodeterior. Biodegrad., 2018, 126: 169

[本文引用: 1]

Gutarowska B, Celikkol-Aydin S, Bonifay V, et al.

Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings

[J]. Front. Microbiol., 2015, 6: 979

DOI      PMID      [本文引用: 1]

Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.

Chen S Q, Hou R Z, Zhang X, et al.

The study of riboflavin-mediated indirect electron transfer process in corrosion of EH40 steel induced by Methanococcus maripaludis

[J]. Corros. Sci., 2023, 225: 111567

[本文引用: 1]

Pu Y A, Chen S G, Man C, et al.

Investigation on the stress corrosion cracking behavior and mechanism of 90/10 copper-nickel alloy under the cooperative effect of tensile stress and Desulfovibrio vulgaris

[J]. Corros. Sci., 2023, 225: 111617

Sharma M, Liu H W, Chen S Q, et al.

Effect of selected biocides on microbiologically influenced corrosion caused by Desulfovibrio ferrophilus IS5

[J]. Sci. Rep., 2018, 8: 16620

Wang D, Yang C T, Zheng B R, et al.

Microbiologically influenced corrosion of CoCrFeMnNi high entropy alloy by sulfate-reducing bacterium Desulfovibrio vulgaris

[J]. Corros. Sci., 2023, 223: 111429

[本文引用: 1]

Wan H H, Zhang T S, Xu Z X, et al.

Effect of sulfate reducing bacteria on the galvanic corrosion behavior of X52 carbon steel and 2205 stainless steel bimetallic couple

[J]. Corros. Sci., 2023, 212: 110963

[本文引用: 3]

Kagarise C, Vera J R, Eckert R B.

The importance of deposit characterization in mitigating UDC and MIC in dead legs

[A]. Corrosion 2017 [C]. New Orleans, Louisiana, USA, 2017: 9128

[本文引用: 1]

Haruna K, Obot I B, Saleh T A.

Infrared spectroscopy in corrosion research

[A]. KayaS, ObotIB, ÖzkirD, et al. Corrosion Science: Theoretical and Practical Applications [M]. New York: Apple Academic Press, 2023: 261

Dwivedi D, Lepková K, Becker T.

Carbon steel corrosion: a review of key surface properties and characterization methods

[J]. RSC Adv., 2017, 7: 4580

[本文引用: 1]

Beech I B.

Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study

[J]. Int. Biodeterior. Biodegrad., 2004, 53: 177

[本文引用: 1]

Cui T Y, Qian H C, Lou Y T, et al.

Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM

[J]. Corros. Sci., 2022, 206: 110543

Steele A, Goddard D T, Beech I B.

An atomic force microscopy study of the biodeterioration of stainless steel in the presence of bacterial biofilms

[J]. Int. Biodeterior. Biodegrad., 1994, 34: 35

Surman S B, Walker J T, Goddard D T, et al.

Comparison of microscope techniques for the examination of biofilms

[J]. J. Microbiol. Methods, 1996, 25: 57

Wei B X, Xu J, Gao L Q, et al.

Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance

[J]. J. Mater. Sci. Technol., 2022, 107: 111

DOI      [本文引用: 1]

Microbiologically influenced corrosion (MIC) is an unavoidable problem in several industries. Copper (Cu) and its alloys are widely used engineering materials. However, MIC of Cu remains a persistent challenge to their performance and functional lifetime under aggressive environments. This study investigated nanosecond pulsed laser processing (LP), which may enhance the corrosion resistance of Cu. The microstructural evolution and corrosion behavior of LP-Cu in the presence of sulfate-reducing bacteria (SRB) were evaluated. Typical deformation-induced microstructural features of high-density dislocations were analyzed on the top surface of LP-Cu coupon. Electrochemical measurements suggested that LP-Cu coupons exhibited better corrosion resistance in SRB-inoculated solution compared with their original counterpart. The enhanced corrosion resistance by LP primarily resulted from the combined influences of compressive residual stress and work hardening in the surface. However, overlap percentage played a key role in improving corrosion resistance. LP produced optimal corrosion resistance at 50% overlap. Therefore, this study introduces a unique and an option for anticorrosion control in manufacturing processes and potentially implements it onto other materials to improve its microbial corrosion resistance through LP.

Gao Q Y, Zeng W G, Wang H, et al.

Effect of fluid scouring on sulfate reducting bacteria induced corrosion of pipeline steel

[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1087

高秋英, 曾文广, 王 恒 .

流体冲刷作用对SRB的腐蚀行为影响研究

[J]. 中国腐蚀与防护学报, 2023, 43: 1087

DOI     

采用数值仿真与实验相结合研究了流体冲刷下SRB的腐蚀行为。基于计算流体动力学 (CFD) 得到的管道腐蚀区域预测云图和粒子运动轨迹图结果,预判管道腐蚀部位,结果表明管道底部较顶部腐蚀、管道出口处腐蚀较入口处严重;在预判管道腐蚀部位布置研究电极,运用电化学方法以及表面分析方法探究了流体冲刷下SRB的腐蚀规律。结果表明,SRB在金属表面未形成生物膜时 (未进行预膜处理),冲刷腐蚀占主导地位,金属表面有明显的冲刷腐蚀特点,腐蚀产物主要以Fe的氧化物为主。当SRB在金属表面预先形成致密生物膜时(进行预膜处理),SRB腐蚀占主导地位,生物膜会减缓冲刷腐蚀,但膜下SRB的生命活动会与金属基体发生电子交换,从而发生SRB腐蚀,腐蚀产物主要以硫铁化合物为主。

Xu D K, Xia J, Zhou E Z, et al.

Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm

[J]. Bioelectrochemistry, 2017, 113: 1

[本文引用: 1]

Yazdi M, Khan F, Abbassi R, et al.

A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines

[J]. Reliab. Eng. Syst. Safe., 2022, 223: 108474

[本文引用: 1]

Zeng Y, Qi P, Chen J W, et al.

Target aided self-assembly of DNA hyperbranched nanostructures for bacterial 16 S ribosomal DNA gene SERS detection

[J]. Sensor. Actuat. Chem., 2023, 396: 134423

[本文引用: 1]

Zeng Y, Qi P, Zhou Y N, et al.

Multi pathogenic microorganisms determination using DNA composites-encapsulated DNA silver nanocluster/graphene oxide-based system through rolling cycle amplification

[J]. Microchim. Acta, 2022, 189: 403

Zeng Y, Qi P, Wang Y W, et al.

DNA pom-pom nanostructure as a multifunctional platform for pathogenic bacteria determination and inactivation

[J]. Biosens. Bioelectron., 2021, 177: 112982

Qi P, Wan Y, Zeng Y, et al.

Rapid detection methods for sulfate-reducing bacteria in marine environments

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 387

[本文引用: 1]

戚 鹏, 万 逸, 曾 艳 .

海洋环境中硫酸盐还原菌的快速测定方法研究

[J]. 中国腐蚀与防护学报, 2019, 39: 387

[本文引用: 1]

Wang Y W, Zhang D, Sun Y, et al.

Precise localization and simultaneous bacterial eradication of biofilms based on nanocontainers with successive responsive property toward pH and ATP

[J]. ACS Appl. Mater. Interfaces, 2023, 15: 8424

[本文引用: 3]

Wang Y W, Zhang D, Zeng Y, et al.

Selective ATP detection via activation of MoS2-based artificial nanozymes inhibited by ZIF-90 nanoparticles

[J]. ACS Appl. Nano Mater., 2021, 4: 11545

Wang Y W, Zhang D, Zeng Y, et al.

Target-modulated competitive binding and exonuclease I-powered strategy for the simultaneous and rapid detection of biological targets

[J]. Biosens. Bioelectron., 2022, 198: 113817

Wang Y W, Qi P, Zhang D, et al.

Dual-signal viscosity flow paper sensor for ATP detection based on bio-recognition and nanozyme activity regulation of ZIF-90

[J]. Chem. Eng. J., 2024: 148590

[本文引用: 1]

Beech I B, Sunner J.

Biocorrosion: towards understanding interactions between biofilms and metals

[J]. Curr. Opin. Biotechnol., 2004, 15: 181

[本文引用: 1]

Videla H A, Herrera L K.

Microbiologically influenced corrosion: looking to the future

[J]. Int. Microbiol., 2005, 8: 169

PMID      [本文引用: 1]

This review discusses the state-of-the-art of research into biocorrosion and the biofouling of metals and alloys of industrial usage. The key concepts needed to understand the main effects of microorganisms on metal decay, and current trends in monitoring and control strategies to mitigate the deleterious effects of biocorrosion and biofouling are also described. Several relevant cases of biocorrosion studied by our research group are provided as examples: (i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; (ii) sulfate-reducing bacteria (SRB)-induced corrosion of steel; (iii) biocorrosion and biofouling interactions in the marine environment; (iv) monitoring strategies for assessing biocorrosion in industrial water systems; (v) microbial inhibition of corrosion; (vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. Future prospects in the field are described with respect to the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopic techniques for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis).

Maxwell S.

Predicting microbially influenced corrosion (MIC) in seawater injection systems

[A]. SPE International Oilfield Corrosion Symposium [C]. Aberdeen, UK, 2006

[本文引用: 1]

Sørensen K B, Thomsen U S, Juhler S, et al.

Cost efficient MIC management system based on molecular microbiological methods

[A]. Corrosion 2012 [C]. Salt Lake City, Utah, 2012: 1111

[本文引用: 1]

Larsen J, Sørense K B, Juhler S, et al.

The application of molecular microbiological methods for early warning of MIC in pipelines

[A]. CORROSION 2013 [C]. Orlando, Florida, 2013: 2029

[本文引用: 1]

Hong H P.

Application of the stochastic process to pitting corrosion

[J]. Corrosion, 1999, 55: 10

[本文引用: 1]

Adumene S, Adedigba S, Khan F, et al.

An integrated dynamic failure assessment model for offshore components under microbiologically influenced corrosion

[J]. Ocean Eng., 2020, 218: 108082

[本文引用: 1]

Peng C G, Suen S Y, Park J K.

Modeling of anaerobic corrosion influenced by sulfate-reducing bacteria

[J]. Water Environ. Res., 1994, 66: 707

[本文引用: 1]

von Wolzogen Kühr C A H, Van der Vlugt L S.

The graphitization of cast iron as an electrobiochemical process in anaerobic soil

[J]. Water, 1934, 18: 147

[本文引用: 1]

Al‐Darbi M M, Agha K, Islam M R.

Comprehensive modelling of the pitting biocorrosion of steel

[J]. Can. J. Chem. Eng., 2005, 83: 872

[本文引用: 1]

Melchers R E, Wells T.

Models for the anaerobic phases of marine immersion corrosion

[J]. Corros. Sci., 2006, 48: 1791

[本文引用: 1]

Afanasyev M, van Paassen L, Heimovaara T.

A numerical model of controlled bioinduced mineralization in a porous medium to prevent corrosion

[A]. EGU General Assembly Conference Abstracts [C]. 2013: EGU2013

[本文引用: 1]

Haile T, Teevens P, Zhu Z.

Sulphate-reducing bacteria growth kinetics-based microbiologically influenced corrosion predictive model

[J]. J. Pipeline Eng., 2015, 14: 259

[本文引用: 1]

Gu T Y, Zhao K L, Nesic S.

A new mechanistic model for MIC based on a biocatalytic cathodic sulfate reduction theory

[A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009: 09390

[本文引用: 1]

Gu T Y.

Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion

[J]. J. Microb. Biochem. Technol., 2014, 6: 68

[本文引用: 1]

Xu D K, Li Y C, Gu T Y.

Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria

[J]. Bioelectrochemistry, 2016, 110: 52

DOI      PMID      [本文引用: 1]

Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

/