Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1641-1648     CSTR: 32134.14.1005.4537.2024.135      DOI: 10.11902/1005.4537.2024.135
  研究报告 本期目录 | 过刊浏览 |
基于电磁感应红外热成像技术的涂层缺陷检测
赵岩1, 粘磊2, 王钰2, 唐晓1()
1.中国石油大学(华东) 材料科学与工程学院 青岛 266580
2.日照实华原油码头有限公司 日照 276800
Coating Defect Detection Based on Electromagnetic Induction Infrared Thermal Imaging Technology
ZHAO Yan1, NIAN Lei2, WANG Yu2, TANG Xiao1()
1. School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
2. Rizhao Shihua Crude Oil Terminal Co., Ltd., Rizhao 276800, China
引用本文:

赵岩, 粘磊, 王钰, 唐晓. 基于电磁感应红外热成像技术的涂层缺陷检测[J]. 中国腐蚀与防护学报, 2024, 44(6): 1641-1648.
Yan ZHAO, Lei NIAN, Yu WANG, Xiao TANG. Coating Defect Detection Based on Electromagnetic Induction Infrared Thermal Imaging Technology[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1641-1648.

全文: PDF(9470 KB)   HTML
摘要: 

为了实现涂层缺陷的无损可视化检测,本文基于电磁感应红外热成像系统对缺陷涂层钢板进行了缺陷检测,根据红外热像图中颜色明暗差异、缺陷形状以及缺陷与临界温差大小建立了不同涂层缺陷类型的定性评判准则。将该准则用于识别涂层在海洋环境腐蚀失效过程中出现的缺陷,结合Kelvin电位分布和电极形貌可见光图像验证了涂层缺陷判断准则的可靠性。

关键词 电磁感应红外热成像涂层金属缺陷检测评判准则    
Abstract

Usually, early failures of anti-corrosion coating for marine engineering equipment are difficult to be detected in time, and indeed such failures are potential safety hazard. Herein, defects in coatings on steel plate were detected via electromagnetic induction infrared thermal imaging system, aiming in realizing non-destructive visual detection of coating defects. Meanwhile, qualitative evaluation criteria for different type of coating defects were proposed, according to the comprehensive assessment of the acquired infrared thermal images in terms of the color brightness difference throughout the image, the temperature difference between defects and their adjacent area, as well as the shape of defects in the acquired infrared thermal images. The established criteria of coating defect types may be used to identify defects occurred in coatings during their service process in marine environment, and the reliability of the criteria is verified by the Kelvin probe measured potential distribution and visible light images of the relevant coatings.

Key wordselectromagnetic induction infrared thermal imaging    coating metal    defect detection    evaluation criteria
收稿日期: 2024-04-24      32134.14.1005.4537.2024.135
ZTFLH:  TG172  
基金资助:青岛市开发区科技项目(05T2208002)
通讯作者: 唐 晓,E-mail:tangxiao@upc.edu.cn,研究方向为大气腐蚀电化学和钢筋混凝土腐蚀无损监/检测
Corresponding author: TANG Xiao, E-mail: tangxiao@upc.edu.cn
作者简介: 赵 岩,女,1997年生,硕士生
图1  涂层的不同缺陷类型
图2  带缺陷的涂层金属样品
图3  密排阵列电极和电解池示意图
图4  涂层/金属表面划痕缺陷图
图5  缺陷涂层钢板可见光图像和红外热像图
图6  不同缺陷类型的温差分布图
Defect colorΔT / ℃Defect shapeDefect type
Bright area0.5 ~ 1Irregular regionCorrosion cracking of coating
Bright area0 ~ 0.5Irregular regionMetal corrosion under coating
Dark space< 1.5roundnessCoating bubbling
Dark space> 2Circular/irregular areasCoating stripping
Dark space> 2linearCoating scratch
表1  涂层缺陷类型定性判断标准表
图7  海洋环境中涂层腐蚀失效图像
图8  去掉涂层后的电极形貌图
图9  红外热像图和可见光图像中涂层缺陷腐蚀状态对应图
图10  不同区域电极电化学阻抗谱图
图11  不同区域等效电路图
RegionRpoRfRctCcl
Ω·cm2Ω·cm2Ω·cm2F·cm-2
1-4.32 × 1031.86 × 1042.82 × 10-5
25.08 × 1041.75 × 1051.13 × 1064.14 × 10-6
表2  不同区域电极阻抗拟合结果
1 Zhao Z Y, Wang J. Progresses in cathodic delamination of organic coatings from metals [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116
1 (赵增元, 王 佳. 有机涂层阴极剥离作用研究进展 [J]. 中国腐蚀与防护学报, 2008, 28: 116)
2 Hammer P, dos Santos F C, Cerrutti B M, et al. Carbon nanotube-reinforced siloxane-PMMA hybrid coatings with high corrosion resistance [J]. Prog. Org. Coat., 2013, 76: 601
3 Xu Y X, Yan C W, Gao Y M, et al. Underfilm corrosion of metals and failure of organic coatings in atmosphere [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 249
3 (徐永祥, 严川伟, 高延敏 等. 大气环境中涂层下金属的腐蚀和涂层的失效 [J]. 中国腐蚀与防护学报, 2002, 22: 249)
4 Bian J. The research developments in adhesive force between organic coating and metal substrate and pretreatments to metal surface [J]. Shandong Mach., 2004, (1): 25
4 (边 洁. 有机涂层附着力与金属表面预处理研究的新进展 [J]. 山东机械, 2004, (1): 25)
5 Li Q, Li J Y, Sun M J, et al. Performance degradation of three coatings in simulated tropical marine atmospheric environment [J]. Environ. Technol., 2023, 41(3): 11
5 (李 茜, 李景育, 孙茂钧 等. 三种涂层在模拟热带海洋大气环境中的性能退化研究 [J]. 环境技术, 2023, 41(3): 11)
6 Cai G Y, Zhang D P, Zhao W H, et al. Research advances of protective performance and failure evaluation for organic coatings [J]. Corros. Prot., 2017, 38: 657
6 (蔡光义, 张德平, 赵苇杭 等. 有机涂层防护性能与失效评价研究进展 [J]. 腐蚀与防护, 2017, 38: 657)
7 Liu B. The status and progress of nondestructive measurement technology for metal corrosion under coating [J]. Shanghai Coat., 2012, 50(5): 53
7 (刘 斌. 涂层下金属腐蚀无损检测技术现状与进展 [J]. 上海涂料, 2012, 50(5): 53)
8 Zhang C Z, Jiang W, Li S J, et al. Recent research progress of marine anticorrosive coatings [J]. Corros. Sci. Prot. Technol., 2016, 28: 269
8 (张超智, 蒋 威, 李世娟 等. 海洋防腐涂料的最新研究进展 [J]. 腐蚀科学与防护技术, 2016, 28: 269)
doi: 10.11903/1002.6495.2015.221
9 Cao L W, Zhang S, Shao S S, et al. Progress of emergency maintenance equipment for pressure pipeline leakage accident [J]. China Spec. Equip. Saf., 2022, 38(11): 8
9 (曹逻炜, 张 硕, 邵珊珊 等. 压力管道泄漏事故应急维抢修装备技术进展 [J]. 中国特种设备安全, 2022, 38(11): 8)
10 Wang W J, Han J C, Mao Y, et al. Research progress on monitoring techniques for corrosion under insulating layer [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 22
10 (王伟杰, 汉继程, 毛 阳 等. 保温层下腐蚀监检测技术研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 22)
doi: 10.11902/1005.4537.2022.039
11 Lv J, Yue Q X, Ding R, et al. Intelligent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluorescent off-on probes [J]. J. Taiwan Inst. Chem. Eng., 2021, 118: 309
12 Hu Y F, Cao X K, Ma X Z, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 460
12 (胡云飞, 曹祥康, 马小泽 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化 [J]. 中国腐蚀与防护学报, 2023, 43: 460)
doi: 10.11902/1005.4537.2022.202
13 Ma B Q, Zhou Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 1787
13 (马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势 [J]. 航空学报, 2014, 35: 1787)
doi: 10.7527/S1000-6893.2013.0490
14 Schönberger A, Virtanen S, Giese V, et al. Non-destructive detection of corrosion applied to steel and galvanized steel coated with organic paints by the pulsed phase thermography [J]. Mater. Corros., 2012, 63: 195
15 Han J S, Park J H. Detection of corrosion steel under an organic coating by infrared photography [J]. Corros. Sci., 2004, 46: 787
16 Yang R Z, He Y Z, Zhang H, et al. Through coating imaging and nondestructive visualization evaluation of early marine corrosion using electromagnetic induction thermography [J]. Ocean Eng., 2018, 147: 277
17 He Y Z, Tian G Y, Cheng L, et al. Parameters influence in steel corrosion evaluation using PEC thermography [A]. The 17th International Conference on Automation and Computing [C]. Huddersfield, UK: IEEE, 2011: 255
18 Kopf L F, Tighe R C. Automated detection and quantification of the onset of undercoating corrosion using pulsed thermography [J]. Mater. Corros., 2023, 74: 777
19 Yang S. Research on heat source model and numerical simulation of high frequency induction heating forming [J]. Dev. Appl. Mater., 2015, 30(4): 20
19 (杨 澍. 高频电磁感应加热成形热源模型建立及数值模拟研究 [J]. 材料开发与应用, 2015, 30(4): 20)
20 Zhang H H. Principle and Application of nondestructive detection technology of infrared thermal imaging [J]. Sci. Technol. Inform., 2013, (35): 181
20 (张慧慧. 红外热成像无损检测技术原理及其应用 [J]. 科技信息, 2013, (35): 181)
[1] 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[2] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.