Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1203-1215     CSTR: 32134.14.1005.4537.2022.410      DOI: 10.11902/1005.4537.2022.410
  综合评述 本期目录 | 过刊浏览 |
渗透氢检测方法研究进展
周欣1, 吴大康2, 成旭2, 扈俊颖1, 钟显康1,3()
1.西南石油大学石油与天然气工程学院 成都 610500
2.长庆油田分公司第十二采油厂 西安 710200
3.西南石油大学 油气藏地质及开发工程国家重点实验室 成都 610500
Research Progress of Detection Techniques for Permeated Hydrogen
ZHOU Xin1, WU Dakang2, CHENG Xu2, HU Junying1, ZHONG Xiankang1,3()
1.School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
2.No. 12 Oil Production Plant of Changqing Oilfield, Xi'an 710200, China
3.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
引用本文:

周欣, 吴大康, 成旭, 扈俊颖, 钟显康. 渗透氢检测方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1203-1215.
Xin ZHOU, Dakang WU, Xu CHENG, Junying HU, Xiankang ZHONG. Research Progress of Detection Techniques for Permeated Hydrogen[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1203-1215.

全文: PDF(755 KB)   HTML
摘要: 

为实现“碳达峰、碳中和”战略目标,大力发展氢能产业至关重要。氢在制备、运输、储存和使用过程中,容易产生氢渗透,可造成金属材料发生氢损伤,不仅缩短了含氢管道和设备的服役寿命,还带来了严重的安全隐患。因此,推动渗透氢检测技术的发展具有十分重要的意义。渗透氢检测技术可分为室内渗透氢检测技术和现场渗透氢检测技术两大类。室内渗透氢检测方法主要有:电流法、熔融萃取法、热脱附法 (TDS)、氢-微接触打印法 (HMP)、二次离子质谱 (SIMS) 法、扫描开尔文探针-原子显微镜技术 (SKPFM) 法、原子探针技术 (APT) 和中子照相 (NRG) 法;现场渗透氢检测方法有:氢致变色识别法、氢通量法、氢探针法、氢传感器和现场开尔文探针 (FKP) 技术。在室内检测方面,本文总结了各方法的原理、适用范围和特点,重点综述了它们在氢检测领域中的应用。其中,电流法、熔融萃取法和TDS是检测试样表面的平均氢浓度,不具备局部分辨能力。HMP通过Ag+和H的置换反应产生的银颗粒,反映氢的分布和扩散路径,但无法确定Fe有没有参与其中。SKPFM通过连续检测某一位置的电位,可以观察氢在特定位置的富集和扩散动力学过程,但材料外加电流/电位时,会干扰检测结果。SIMS和APT均采用质谱法检测,都具有局部分辨能力,但要充氘排除背景氢的影响。NRG通过检测氢强度和明亮区判断氢的浓度和分布,但空间分辨率只能达到微米级。在现场检测方面,本文调研了市面上几种检测设备的参数,总结了各方法的原理、使用范围和优缺点。最后,对未来渗透氢检测方法的发展提出了建议。

关键词 渗透氢检测氢能含氢管道含氢设备    
Abstract

In order to achieve the goals of the “peak carbon dioxide emission and carbon neutrality”, it is essential to develop hydrogen energy. During the production, transportation, storage and use of hydrogen, hydrogen permeation is easy to occur and causes hydrogen damage to metal materials, which not only shortens the service life of pipelines and equipment, but also brings serious potential safety hazards. So it is of great significance to promote the development of permeated hydrogen detection techniques. Permeated hydrogen testing technology can be divided into indoor- and field-permeated hydrogen testing techniques. The indoor permeated hydrogen testing techniques include current method, hot/melt extraction, thermal desorption spectroscopy (TDS), hydrogen micro-contact printing (HMP), scanning Kelvin probe force microscopy (SKPFM), secondary ion mass spectroscopy (SIMS), atom probe tomography (APT) and neutron radiography (NRG). The field permeated hydrogen testing techniques include hydrogenochromic method, hydrogen flux method, hydrogen probe method, hydrogen sensor, as well as field Kelvin probe (FKP) technique. For the indoor testing, the principles and characteristics of several detection techniques were summarized and applicable scope was also introduced. The current method, hot/melt extraction and TDS are used to measure the average hydrogen concentration in materials, but none of the above methods have the ability of spatial resolution. The silver particles produced by the substitution reaction between Ag+ and H by HMP reflect the distribution and diffusion path of hydrogen, but it is not certain whether Fe participates in that. By continuously detecting the potential of a certain position, SKPFM can reveal the hydrogen enrichment and the dynamic process of diffusion in a specific position. However, when current/potential is applied on the sample surface, it will disturb the test results. Both SIMS and APT technology rely on mass spectrometry, and have spatial resolution but their measuring chamber need to be filled with deuterium to eliminate the influence of background hydrogen. NRG can judge the concentration and distribution of hydrogen by detecting the hydrogen intensity and bright area, but its spatial resolution can only reach micron level. For the field testing, the parameters of several testing equipment provided on the market are investigated in this article, while the principle, application scope, advantages and disadvantages of each method are also summarized. Finally, some suggestions are put forward for the future development of hydrogen permeation detection methods.

Key wordspermeated hydrogen    detection    hydrogen energy    hydrogen-containing pipeline    hydrogen-containing equipment
收稿日期: 2022-12-26      32134.14.1005.4537.2022.410
ZTFLH:  TG172  
基金资助:国家自然科学基金(52171080);四川省科技计划项目
通讯作者: 钟显康,E-mail: zhongxk@yeah.net,研究方向为油气田腐蚀与防护研究
Corresponding author: ZHONG Xiankang, E-mail: zhongxk@yeah.net
作者简介: 周欣,女,1999年生,硕士生
Trap typeBlinding energy kJ·mol-1Reference
Vacancy30-60[22], [23]
Microvoid40[24]
Dislocation20-30[25], [26]
Strain field12-27[27], [28], [29]
GB9-49[27], [30], [31]
Prior austenite47[32]
Austenite-ferrite44[33]
Iron oxide interface43-62[24]
表1  常见的氢陷阱及其激活能
NameSensitivity 10-12 L·cm-2·s-1Response time / sRange of hydrogen flux 10-12 L·cm-2·s-1
Hydrosteel 6000±1<500-15000
Hydrosteel 65002901-20000
Hydrosteel 70001<1801-2000
表2  氢通量仪参数
NameTypeMaximum pressure / MPaRange MPaLength m
HY 4000Intrusive13.790-0.280.089
HY 7000Intrusive24.820-0.410.076
HY 7001Non-intrusive24.82
表3  氢探针参数
NameSensitivityRange mg·kg-1Response time / sTemperature range / ℃Humidity range / RH%
CAT16

>0.012 v%

methane

0-40000<10-40-+5015-90
CAT25

>0.012 v%

methane

0-40000<10-40-+5015-90
4-LEL-4.25V

0.032±0.01 v%

methane

0-40000<20-20-+5015-90
4-LEL-2.3V

0.023±0.07 v%

methane

0-40000<20-20-+5015-90
TGS6812-D000.008-0.016 v in 4000 mg·kg-10-40000-10-+700-95
CGM6812-B000-14000≤30-60-+7020-95
表4  催化氢传感器参数
NameSensitivity μA·mg-1·kgRange / mg·kg-1Response time / sTemperature range / ℃Humidity range RH%Service life a
4-H2-10000.02±0.010-1000≤70-20-+5015-902
4-H2-400000.007±0.0020-40000≤60-20-+5015-902

(0-20000)

PPM H2

0.003±0.0020-20000

T50:<10

T90:<30

>5

(0-1000)

PPM H2

ME3-H2

ME4-H2

0.008±0.003

0.01±0.005

0.03±0.01

0-1000

0-1000

0-1000

T50:<10

T90:<30

T90:≤90

T90:≤30

-20-+50

-20-+50

15-90

15-90

>5

2

2

ME2-H20.002±0.0010-30000T90:<30-20-+5015-903
表5  电流型氢传感器参数
NameSensitivityRange mg·kg-1Temperature range / ℃Humidity range / RH%Service life a
MIX 1008

Rs (in air) / Rs (in 1000 mg·kg-1 H2)

≥5

100-100020±255±55
MQ-8

Rs (in air) / Rs (in 1000 mg·kg-1 H2)

≥5

100-100020±255±510
MQ-2Rs (in air) / Rs (in 1000 mg·kg-1 C3H8)≥5300-1000020±265±510
表6  半导体金属氧化物氢传感器
1 Zhang Z, Zhao Y J, Cai N. Technological development status and prospect of hydrogen energy industry in China [J]. Nat. Gas Ind., 2022, 42(5): 156
1 张 智, 赵苑瑾, 蔡 楠. 中国氢能产业技术发展现状及未来展望 [J]. 天然气工业, 2022, 42(5): 156
2 Han H M, Yang Z, Wang M, et al. The current situation and prospect of hydrogen production and utilization in China [J]. China Coal, 2021, 47(5): 59
2 韩红梅, 杨 铮, 王 敏 等. 我国氢气生产和利用现状及展望 [J]. 中国煤炭, 2021, 47(5): 59
3 Liu J, Zhong C F. Current status and prospects of hydrogen energy development in China [J]. China Energy, 2019, 41(2): 32
3 刘 坚, 钟财富. 我国氢能发展现状与前景展望 [J]. 中国能源, 2019, 41(2): 32
4 Yang J, Wang X L, Li Z Z, et al. Present status and discussion of long-distance pipeline hydrogen transportation technology [J]. Pressure Vessel Technol., 2021, 38(2): 80
4 杨 静, 王晓霖, 李遵照 等. 氢气长距离管输技术现状与探讨 [J]. 压力容器, 2021, 38(2): 80
5 Ma T X, Gao L Z, Hu M J, et al. Research progress of solid hydrogen storage materials [J]. J. Funct. Mater., 2018, 49: 4001
doi: 10.3969/j.issn.1001-9731.2018.04.001
5 马通祥, 高雷章, 胡蒙均 等. 固体储氢材料研究进展 [J]. 功能材料, 2018, 49: 4001
doi: 10.3969/j.issn.1001-9731.2018.04.001
6 Shang J, Lu Y H, Zheng J Y, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures [J]. Chem. Ind. Eng. Prog., 2021, 40: 5499
6 尚 娟, 鲁仰辉, 郑津洋 等. 掺氢天然气管道输送研究进展和挑战 [J]. 化工进展, 2021, 40: 5499
7 Li J F, Su Y, Zhang H, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Nat. Gas Ind., 2021, 41(4): 137
7 李敬法, 苏 越, 张 衡 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(4): 137
8 McBreen J, Nonis L, Beck W. A method for determination of the permeation rate of hydrogen through metal membranes [J]. J. Electrochem. Soc., 1966, 113: 1218
doi: 10.1149/1.3087209
9 Mohtadi-Bonab M A, Karimdadashi R, Eskandari M, et al. Hydrogen-induced cracking assessment in pipeline steels through permeation and crystallographic texture measurements [J]. J. Mater. Eng. Perform., 2016, 25: 1781
doi: 10.1007/s11665-016-2021-8
10 Xue H B, Cheng Y F. Hydrogen permeation and electrochemical corrosion behavior of the X80 pipeline steel weld [J]. J. Mater. Eng. Perform., 2013, 22: 170
doi: 10.1007/s11665-012-0216-1
11 Zhang L, Shen H J, Lu K D, et al. Investigation of hydrogen concentration and hydrogen damage on API X80 steel surface under cathodic overprotection [J]. Int. J. Hydrog. Energy, 2017, 42: 29888
doi: 10.1016/j.ijhydene.2017.10.116
12 Zhao W M, Zhang T M, He Z R, et al. Determination of the critical plastic strain-induced stress of X80 steel through an electrochemical hydrogen permeation method [J]. Electrochim. Acta, 2016, 214: 336
doi: 10.1016/j.electacta.2016.08.026
13 Sun Y H, Cheng Y F. Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure [J]. Int. J. Hydrog. Energy, 2021, 46: 23100
doi: 10.1016/j.ijhydene.2021.04.115
14 Yu Q, Huang Y L, Zheng C B. Hydrogen permeation and corrosion behaviour of high strength steel 35CrMo under cyclic wet-dry conditions [J]. Corros. Eng. Sci. Technol., 2008, 43: 241
doi: 10.1179/174327808X286473
15 Liu S G, Zhou Y, Wang Z, et al. Progress of detection techniques for hydrogen mapping in steel [J]. Surf. Technol., 2020, 49(8): 1
15 刘神光, 周 耀, 王 正 等. 钢中氢分布检测技术进展 [J]. 表面技术, 2020, 49(8): 1
16 Depover T, Wallaert E, Verbeken K. On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe-C alloys [J]. Mater. Sci. Eng., 2016, 664A: 195
17 Depover T, Verbeken K. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys [J]. Corros. Sci., 2016, 112: 308
doi: 10.1016/j.corsci.2016.07.013
18 Depover T, Verbeken K. Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys [J]. Mater. Sci. Eng., 2016, 675A: 299
19 Depover T, Verbeken K. Thermal desorption spectroscopy study of the hydrogen trapping ability of W based precipitates in a Q&T matrix [J]. Int. J. Hydrog. Energy, 2018, 43: 5760
doi: 10.1016/j.ijhydene.2018.01.184
20 Laureys A, Claeys L, Pinson M, et al. Thermal desorption spectroscopy evaluation of hydrogen-induced damage and deformation-induced defects [J]. Mater. Sci. Technol., 2020, 36: 1389
doi: 10.1080/02670836.2020.1783618
21 Qu W M, Hua Z L, Li X Y, et al. Application of TDS technology in the study of hydrogen traps in the materials of hydrogen storage vessels [J]. Chem. Ind. Eng. Prog., 2017, 36: 4160
doi: 10.16085/j.issn.1000-6613.2016-2274
21 屈文敏, 花争立, 李雄鹰 等. 热脱附谱技术在储氢容器材料氢陷阱研究中的应用研究进展 [J]. 化工进展, 2017, 36: 4160
doi: 10.16085/j.issn.1000-6613.2016-2274
22 Tateyama Y, Ohno T. Stability and clusterization of hydrogen-vacancy complexes in α-Fe: an ab initio study [J]. Phys. Rev., 2003, 67B: 174105
23 Mirzaev D A, Mirzoev A A, Okishev K Y, et al. Hydrogen-vacancy interaction in bcc iron: ab initio calculations and thermodynamics [J]. Mol. Phys., 2014, 112: 1745
doi: 10.1080/00268976.2013.861087
24 Lee J L, Lee J Y. Hydrogen trapping in AISI 4340 steel [J]. Met. Sci., 1983, 17: 426
doi: 10.1179/030634583790420619
25 Zhao Y, Lu G. QM/MM study of dislocation—hydrogen/helium interactions in α-Fe [J]. Model. Simul. Mater. Sci. Eng., 2011, 19: 065004
26 Itakura M, Kaburaki H, Yamaguchi M, et al. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study [J]. Acta Mater., 2013, 61: 6857
doi: 10.1016/j.actamat.2013.07.064
27 Choo W Y, Lee J Y. Thermal analysis of trapped hydrogen in pure iron [J]. Metall. Trans., 1982, 13A: 135
28 Hagi H, Hayashi Y. Effect of dislocation trapping on hydrogen and deuterium diffusion in iron [J]. Trans. Jpn. Inst. Met., 1987, 28: 368
doi: 10.2320/matertrans1960.28.368
29 Takai K, Homma Y, Izutsu K, et al. Identification of trapping sites in high-strength steels by secondary ion mass spectrometry for thermally desorbed hydrogen [J]. J. Jpn. Inst. Met. Mater., 1996, 60: 1155
30 Bernstein I M. The effect of hydrogen on the deformation of iron [J]. Scr. Metall., 1974, 8: 343
doi: 10.1016/0036-9748(74)90136-7
31 Lin Y C, Chen D, Chiang M H, et al. Response of hydrogen desorption and hydrogen embrittlement to precipitation of nanometer-sized copper in tempered martensitic low-carbon steel [J]. JOM, 2019, 71: 1349
doi: 10.1007/s11837-019-03330-0
32 Parvathavarthini N, Saroja S, Dayal R K, et al. Studies on hydrogen permeability of 2.25% Cr-1% Mo ferritic steel: correlation with microstructure [J]. J. Nucl. Mater., 2001, 288: 187
doi: 10.1016/S0022-3115(00)00706-6
33 Turnbull A, Hutchings R B. Analysis of hydrogen atom transport in a two-phase alloy [J]. Mater. Sci. Eng., 1994, 177A: 161
34 Yagodzinskyy Y, Todoshchenko O, Papula S, et al. Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy [J]. Steel Res. Int., 2011, 82: 20
doi: 10.1002/srin.v82.1
35 Yamabe J, Yoshikawa M, Matsunaga H, et al. Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment [J]. Int. J. Fatigue, 2017, 102: 202
doi: 10.1016/j.ijfatigue.2017.04.010
36 Samanta S, Kumari P, Mondal K, et al. An alternative and comprehensive approach to estimate trapped hydrogen in steels using electrochemical permeation tests [J]. Int. J. Hydrog. Energy, 2020, 45: 26666
doi: 10.1016/j.ijhydene.2020.07.131
37 Pérez T E, García J O. Direct observation of hydrogen evolution in the electron microscope scale [J]. Scr. Metall., 1982, 16: 161
doi: 10.1016/0036-9748(82)90377-5
38 Ichitani K, Kanno M. Visualization of hydrogen diffusion in steels by high sensitivity hydrogen microprint technique [J]. Sci. Technol. Adv. Mater., 2003, 4: 545
doi: 10.1016/j.stam.2003.12.006
39 Sundararajan T, Akiyama E, Tsuzaki K. Hydrogen mapping across crevices [J]. Electrochem. Solid-State Lett., 2005, 8: B30
doi: 10.1149/1.1979367
40 Ohmisawa T, Uchiyama S, Nagumo M. Detection of hydrogen trap distribution in steel using a microprint technique [J]. J. Alloy. Compd., 2003, 356/357: 290
41 Ishikawa N, Sueyoshi H, Nagao A. Hydrogen microprint analysis on the effect of dislocations on grain boundary hydrogen distribution in steels [J]. ISIJ Int., 2016, 56: 413
doi: 10.2355/isijinternational.ISIJINT-2015-329
42 Jack T A, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel [J]. Int. J. Hydrog. Energy, 2020, 45: 17671
doi: 10.1016/j.ijhydene.2020.04.211
43 Thomas A, Szpunar J A. Hydrogen diffusion and trapping in X70 pipeline steel [J]. Int. J. Hydrog. Energy, 2020, 45: 2390
doi: 10.1016/j.ijhydene.2019.11.096
44 Mohtadi-Bonab M A, Szpunar J A, Razavi-Tousi S S. A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels [J]. Eng. Fail. Anal., 2013, 33: 163
doi: 10.1016/j.engfailanal.2013.04.028
45 Koyama M, Yamasaki D, Nagashima T, et al. In situ observations of silver-decoration evolution under hydrogen permeation: effects of grain boundary misorientation on hydrogen flux in pure iron [J]. Scr. Mater., 2017, 129: 48
doi: 10.1016/j.scriptamat.2016.10.027
46 Koyama M, Rohwerder M, Tasan C C, et al. Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation [J]. Mater. Sci. Technol., 2017, 33: 1481
doi: 10.1080/02670836.2017.1299276
47 Gu C H, Zhu S Y, Zheng J Y, et al. Measurement of local hydrogen distribution in metals based on scanning kelvin probe force microscope [J]. Surf. Technol., 2019, 48(10): 329
47 顾超华, 朱盛依, 郑津洋 等. 基于扫描开尔文探针力显微镜的金属中局部氢分布测试方法研究 [J]. 表面技术, 2019, 48(10): 329
48 Wang G, Yan Y, Yang X N, et al. Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy [J]. Electrochem. Commun., 2013, 35: 100
doi: 10.1016/j.elecom.2013.08.006
49 Hua Z L, An B, Iijima T, et al. The finding of crystallographic orientation dependence of hydrogen diffusion in austenitic stainless steel by scanning Kelvin probe force microscopy [J]. Scr. Mater., 2017, 131: 47
doi: 10.1016/j.scriptamat.2017.01.003
50 Hua Z L, Zhu S Y, Shang J, et al. Scanning Kelvin probe force microscopy study on hydrogen distribution in austenitic stainless steel after martensitic transformation [J]. Mater. Lett., 2019, 245: 41
doi: 10.1016/j.matlet.2019.02.089
51 Hua Z L, Wang D L, Liu Z L, et al. Hydrogen distribution at twin boundary in austenitic stainless steel studied by scanning Kelvin probe force microscopy [J]. Mater. Lett., 2019, 234: 175
doi: 10.1016/j.matlet.2018.09.087
52 Li M, Guo L Q, Qiao L J, et al. The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM [J]. Corros. Sci., 2012, 60: 76
doi: 10.1016/j.corsci.2012.04.010
53 Senöz C, Evers S, Stratmann M, et al. Scanning Kelvin probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution [J]. Electrochem. Commun., 2011, 13: 1542
doi: 10.1016/j.elecom.2011.10.014
54 Zhu Z W, Hou J, Zheng T, et al. Development of secondary ion mass spectrometry [J]. J. South-Central Univ. Nationalities (Nat. Sci. Ed.), 2011, 30: 67
54 祝兆文, 侯 杰, 郑 涛 等. 二次离子质谱进展 [J]. 中南民族大学学报 (自然科学版), 2011, 30: 67
55 Li H Y, Niu R M, Li W, et al. Hydrogen in pipeline steels: recent advances in characterization and embrittlement mitigation [J]. J. Nat. Gas Sci. Eng., 2022, 105: 104709
doi: 10.1016/j.jngse.2022.104709
56 Sobol O, Holzlechner G, Nolze G, et al. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel micro-structure [J]. Mater. Sci. Eng., 2016, 676A: 271
57 Röhsler A, Sobol O, Hänninen H, et al. In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load [J]. Sci. Rep., 2020, 10: 3611
doi: 10.1038/s41598-020-60370-2 pmid: 32107420
58 Takai K, Seki J, Homma Y. Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry [J]. Mater. Trans., JIM, 1995, 36: 1134
59 Awane T, Fukushima Y, Matsuo T, et al. Highly sensitive detection of net hydrogen charged into austenitic stainless steel with secondary ion mass spectrometry [J]. Anal. Chem., 2011, 83: 2667
doi: 10.1021/ac103100b pmid: 21401058
60 Sobol O, Holzlechner G, Holzweber M, et al. First use of data fusion and multivariate analysis of ToF-SIMS and SEM image data for studying deuterium-assisted degradation processes in duplex steels [J]. Surf. Interface Anal., 2016, 48: 474
doi: 10.1002/sia.v48.7
61 Liu W Q, Liu Q D, Gu J F. Development and application of atom probe tomography [J]. Acta Metall. Sin., 2013, 49: 1025
doi: 10.3724/SP.J.1037.2013.00362
61 刘文庆, 刘庆冬, 顾剑锋. 原子探针层析技术(APT) 最新进展及应用 [J]. 金属学报, 2013, 49: 1025
doi: 10.3724/SP.J.1037.2013.00362
62 Shen Q, Wang Z M, Li H, et al. Effects of voltage and laser modes on test results of three-dimensional atom probe [J]. PTCA (Part A: Phys. Test.), 2018, 54: 385
62 沈 琴, 王泽民, 李 慧 等. 电压和激光模式对三维原子探针测试结果的影响 [J]. 理化检验: 物理分册, 2018, 54: 385
63 Li L F, Song B, Cheng J, et al. Effects of vanadium precipitates on hydrogen trapping efficiency and hydrogen induced cracking resistance in X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2018, 43: 17353
doi: 10.1016/j.ijhydene.2018.07.110
64 Takahashi J, Kawakami K, Kobayashi Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography [J]. Scr. Mater., 2010, 63: 261
doi: 10.1016/j.scriptamat.2010.03.012
65 Takahashi J, Kawakami K, Tarui T. Direct observation of hydro-gen-trapping sites in vanadium carbide precipitation steel by atom probe tomography [J]. Scr. Mater., 2012, 67: 213
doi: 10.1016/j.scriptamat.2012.04.022
66 Takahashi J, Kawakami K, Kobayashi Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel [J]. Acta Mater., 2018, 153: 193
doi: 10.1016/j.actamat.2018.05.003
67 Stephenson L T, Szczepaniak A, Mouton I, et al. The Laplace Project: An integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions [J]. PLoS One, 2018, 13: e0209211
doi: 10.1371/journal.pone.0209211
68 Dabah E, Griesche A, Beyer K, et al. In situ measurements of hydrogen diffusion in duplex stainless steels by neutron radiography [A]. KannengiesserT, BabuS S, KomizoY I, et al. In-situ Studies with Photons, Neutrons and Electrons Scattering II [M]. Cham: Springer, 2014: 155
69 Beyer K, Kannengiesser T, Griesche A, et al. Neutron radiography study of hydrogen desorption in technical iron [J]. J. Mater. Sci., 2011, 46: 5171
doi: 10.1007/s10853-011-5450-7
70 Griesche A, Dabah E, Kannengiesser T, et al. Three-dimensional imaging of hydrogen blister in iron with neutron tomography [J]. Acta Mater., 2014, 78: 14
doi: 10.1016/j.actamat.2014.06.034
71 Beyer K, Kannengiesser T, Griesche A, et al. Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutron radiography [J]. Nucl. Instrum. Met. Phys. Res. Sect., 2011, 651: 211
72 Ajito S, Hojo T, Koyama M, et al. Application of an iridium complex for detecting hydrogen permeation through pure iron [J]. Int. J. Hydrog. Energy, 2020, 45: 25580
doi: 10.1016/j.ijhydene.2020.06.113
73 Stejskal J, Kratochvíl P, Jenkins A D. The formation of polyaniline and the nature of its structures [J]. Polymer, 1996, 37: 367
doi: 10.1016/0032-3861(96)81113-X
74 Kakinuma H, Ajito S, Hojo T, et al. Real-time visualization of hydrogen distribution in metals using polyaniline: an ultrasensitive hydrogenochromic sensor [J]. Adv. Mater. Interfaces, 2022, 9: 2101984
doi: 10.1002/admi.v9.18
75 Kakinuma H, Ajito S, Hojo T, et al. Simultaneous observations of the corrosion behavior of an Fe sheet and the associated hydrogen distribution therein employing a hydrogenochromic sensor [J]. Corros. Sci., 2022, 206: 110534
doi: 10.1016/j.corsci.2022.110534
76 Kakinuma H, Ajito S, Hojo T, et al. In situ 2D mapping of hydrogen entry into an Fe sheet under a droplet of NaCl solution using a hydrogenochromic sensor [J]. Int. J. Hydrog. Energy, 2022, 47: 38468
doi: 10.1016/j.ijhydene.2022.09.006
77 Sugawara Y, Sakaizawa Y, Shibata A, et al. Detection of hydrogen distribution in pure iron using WO3 thin film [J]. ISIJ Int., 2018, 58: 1860
doi: 10.2355/isijinternational.ISIJINT-2018-236
78 Sugawara Y, Saito H. Improved responsivity and sensitivity of hydrogen mapping technique in pure iron using WO3 thin film by control of Pd intermediate layer [J]. ISIJ Int., 2021, 61: 1201
doi: 10.2355/isijinternational.ISIJINT-2020-563
79 Liu X L, Zhang D P, Dong Z H, et al. Amperometric hydrogen permeation flux method for online corrosion monitoring of oil and gas pipelines [J]. CIESC J., 2014, 65: 3098
doi: 10.3969/j.issn.0438-1157.2014.08.034
79 刘向录, 张德平, 董泽华 等. 电化学氢通量法用于油气管线在线腐蚀监测 [J]. 化工学报, 2014, 65: 3098
doi: 10.3969/j.issn.0438-1157.2014.08.034
80 Hübert T, Boon-Brett L, Black G, et al. Hydrogen sensors–a review [J]. Sens. Actuators, 2011, 157B: 329
81 Zhang W, Yu D R, Xu Z Z, et al. Study on temperature compensation of hydrogen sensor in catalytic combustion [J]. Transducer Microsyst. Technol., 2020, 39(8): 62
81 张 巍, 于德润, 徐振忠 等. 催化燃烧氢气传感器的温度补偿研究 [J]. 传感器与微系统, 2020, 39(8): 62
82 Li Q R. Research progress of hydrogen sensor [J]. Saf. Health Environ., 2021, 21(9): 14
82 李庆润. 氢气传感器研究进展 [J]. 安全、健康和环境, 2021, 21(9): 14
83 Chen X M, Yang G Q, Zhao H R, et al. The application of metal oxide semiconductor gas sensors and their developmen [J]. J. Yuxi Norm. Univ., 2020, 36(6): 57
83 陈祥铭, 杨贵钦, 赵海茹 等. 金属氧化物半导体气体传感器应用现状和发展情况 [J]. 玉溪师范学院学报, 2020, 36(6): 57
84 Nazarov A, Vucko F, Thierry D. Scanning Kelvin Probe for detection of the hydrogen induced by atmospheric corrosion of ultra-high strength steel [J]. Electrochim. Acta, 2016, 216: 130
doi: 10.1016/j.electacta.2016.08.122
85 Cui Y Y, Fan Y M, Wei J Z, et al. Research progress of cathodic disbonding of coatings on buried steel pipeline [J]. Mater. Prot., 2016, 49(8): 62
85 崔艳雨, 范玥铭, 危金卓 等. 埋地钢质管道防腐蚀层阴极剥离作用的研究进展 [J]. 材料保护, 2016, 49(8): 62
86 Zhang W, Wang J, Zhao Z Y, et al. Studies on deterioration process of organic coatings using EIS and SKP [J]. Chem. J. Chin. Univ., 2009, 30: 762
86 张 伟, 王 佳, 赵增元 等. 有机涂层失效过程的电化学阻抗和电位分布响应特征 [J]. 高等学校化学学报, 2009, 30: 762
[1] 王伟杰, 汉继程, 毛阳, 官自超, 狄志刚, 缪磊, 马胜军. 保温层下腐蚀监检测技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 22-28.
[2] 李征鸿, 张志超, 丁磊, 隋青云, 胡小兵, 李察. 飞机燃油系统的微生物污染与腐蚀[J]. 中国腐蚀与防护学报, 2022, 42(6): 1081-1086.
[3] 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[4] 王佳, 刘晓勇, 高灵清, 查小琴, 罗先甫, 张文利, 张恒坤. α型Ti70合金的吸氢行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[5] 闫杰 刘丽红 纪春阳 黄瑞毅. 国内外自然大气环境试验的发展[J]. 中国腐蚀与防护学报, 2009, 29(1): 69-75.
[6] 唐子龙 . 不锈钢耐蚀装饰膜的性能检测[J]. 中国腐蚀与防护学报, 2008, 28(2): 121-128 .
[7] 郑安升; 宋诗哲 . 水环境中焊接件腐蚀电化学传感器的研制[J]. 中国腐蚀与防护学报, 2006, 26(6): 329-331 .
[8] 李相波; 王佳; 王伟 . 海洋环境微生物膜附着的电化学检测技术[J]. 中国腐蚀与防护学报, 2005, 25(2): 84-87 .
[9] 万小山; 田斌; 宋诗哲 . 水下钢铁构筑物腐蚀监/检测电化学传感系统研制[J]. 中国腐蚀与防护学报, 2001, 21(3): 182-187 .
[10] 李谋成; 林海潮; 郑立群 . 土壤腐蚀性检测器的研制[J]. 中国腐蚀与防护学报, 2000, 20(3): 161-166 .