Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 909-917     CSTR: 32134.14.1005.4537.2023.290      DOI: 10.11902/1005.4537.2023.290
  研究报告 本期目录 | 过刊浏览 |
B10铜合金超双疏表面的制备及其性能研究
张吉昊, 徐亚程, 贾学远, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266100
Preparation and Corrosion Resistance of Superamphiphobic Surface on B10 Cu-alloy
ZHANG Jihao, XU Yacheng, JIA Xueyuan, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
Jihao ZHANG, Yacheng XU, Xueyuan JIA, Rongjie GAO. Preparation and Corrosion Resistance of Superamphiphobic Surface on B10 Cu-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 909-917.

全文: PDF(8403 KB)   HTML
摘要: 

采用FeCl3盐溶液刻蚀以及氟硅烷修饰的方法,在B10铜合金基体上成功制备出具有良好耐蚀性的超双疏表面,其对水与乙二醇的接触角分别为158°和151°。采用扫描电子显微镜(SEM)、激光扫描共聚焦显微镜(LSCM)、X射线衍射仪(XRD)、能谱仪(EDS)和X射线光电子能谱(XPS)等手段对其表面微观形貌、化学成分进行表征。通过电化学阻抗谱(EIS)测试以及Tafel极化曲线探究了超双疏试样的耐腐蚀性能。结果表明,相较于裸样,超双疏试样的自腐蚀电位正移至-0.248 V,腐蚀电流密度(Icorr = 2.05 × 10-6 A·cm-2)降低了一个数量级,展现出优异的耐腐蚀性能;在3.5%(质量分数)NaCl溶液中浸泡5 d后,超双疏试样的电荷转移电阻仍明显高于裸样,保持着较好的耐蚀性。

关键词 超双疏表面B10铜合金化学刻蚀耐蚀性    
Abstract

A superamphiphobic surface film with good corrosion protection durability was successfully prepared on B10 Cu-alloy by chemical etching with 1.5 mol/L FeCl3 solution and then modifying with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. The contact angle of water and ethylene glycol on the prepared surface is 158° and 151° respectively. The morphology, chemical composition and corrosion resistance of the superamphiphobic surface film/B10 Cu-alloy were characterized by means of SEM, XRD, EDS and XPS as well as EIS test and Tafel polarization curve and electrochemical test. The results show that compared with the bare B10 Cu-alloy, the corrosion potential of the superamphiphobic surface film/B10 Cu-alloy is positively shifted to -0.248 V, its corrosion current density Icorr = 2.05 × 10-6 A·cm-2 decreases by one order of magnitude, and the charge transfer resistance increases by one order of magnitude, showing excellent corrosion resistance. The charge-transfer resistance of the superamphiphobic film/B10 Cu-alloy after immersion in 3.5%NaCl solution for 5 d is still significantly higher than that of the bare Cu-alloy, in other words, it still maintains good corrosion resistance.

Key wordssuperamphiphobic surface    B10 copper alloy    chemical etching    anti-corrosion
收稿日期: 2023-09-12      32134.14.1005.4537.2023.290
ZTFLH:  TG174  
基金资助:国家自然科学基金-山东省联合基金(U1706221)
通讯作者: 高荣杰,E-mail: dmh206@ouc.edu.cn,研究方向为海洋腐蚀与防护,阴极保护
Corresponding author: GAO Rongjie, E-mail: dmh206@ouc.edu.cn
作者简介: 张吉昊,男,1998年生,硕士生
图1  B10铜合金超双疏表面的制备流程示意图
图2  改变不同条件试样表面接触角变化情况
Liquid

Surface tension

(mN·m-1, 20oC)

BareSandingSanding + etching + modifying
Water72.8

92.9°

70.8°

158.3°

Ethylene glycol47.7

70.4°

55.0°

151.5°

表1  不同处理阶段试样表面水和乙二醇接触角的变化
图3  裸样基体和超双疏试样表面形貌
图4  基底和超双疏试样的表面激光共聚焦成像
Sample

Sa

μm

Sdr

μm

Surface area /

cross-sectional area

Bare0.640.401.09
Superamphiphobic0.820.461.13
表2  基底和超双疏试样的表面粗糙度参数
图5  超双疏试样的XRD谱
图6  裸样以及超双疏试样的EDS面扫
图7  超双疏试样的XPS谱
图8  PFDTS修饰改性之后的超双疏表面的红外图谱
图9  裸样与超双疏试样的动电位极化曲线
图10  裸样和超双疏试样在3.5%NaCl溶液中的电化学测试
Sample

Rs

Ω·cm2

CPE

Rf

Ω·cm2

Rct

Ω·cm2

Cdl

F·cm-2

η
Y0 / S⋅sec nn
Bare2.4515.301 × 10-40.73544.98112243.228 × 10-7-
SA(0 d)4.4188.042 × 10-50.69715.674135604.326 × 10-790.97%
SA(1 d)4.7746.891 × 10-40.65624.30475987.242 × 10-783.89%
SA(3 d)3.1513.752 × 10-40.62607.54161964.122 × 10-780.25%
SA(5 d)5.2013.662 × 10-40.60323.75535873.919 × 10-765.88%
表3  电化学拟合参数
[1] Núñez L, Reguera E, Corvo F, et al. Corrosion of copper in seawater and its aerosols in a tropical island [J]. Corros. Sci., 2005, 47: 461
[2] Zhu M L, Qian H J, Fan W H, et al. Surface lurking and interfacial ion release strategy for fabricating a superhydrophobic coating with scaling inhibition [J]. Petrol. Sci, 2022, 19: 3068
[3] Yuan S J, Choong A M F, Pehkonen S O. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu–Ni alloy [J]. Corros. Sci., 2007, 49: 4352
[4] Appa Rao B V, Chaitanya Kumar K. 5-(3-Aminophenyl)tetrazole-A new corrosion inhibitor for Cu–Ni (90/10) alloy in seawater and sulphide containing seawater [J]. Arab. J. Chem., 2017, 10(suppl.2) : S2245
[5] Jin T Z, Zhang W F, Li N, et al. Surface characterization and corrosion behavior of 90/10 copper-nickel alloy in marine environment [J]. Materials (Basel), 2019, 12: 1869
[6] Darmanin T, Guittard F. Superhydrophobic and superoleophobic properties in nature [J]. Mater. Today, 2015, 18: 273
[7] Li Y Q, Si W T, Gao R J. Facile preparation of superamphiphobic aluminum alloy surfaces and their corrosion resistance [J]. Surf. Coat. Technol., 2022, 430: 127997
[8] Guo Z G, Liu W M. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure [J]. Plant Sci., 2007, 172: 1103
[9] Huang P, Gao R J, Liu W B, et al. Fabrication of superamphiphobic surface for nickel-plate on pipeline steel by salt solution etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 96
[9] 黄 鹏, 高荣杰, 刘文斌 等. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 96
[10] Liu Y, Han X Y, Chen C, et al. A fluorine-free and nanoparticle-free superhydrophobic coating: A mechanism and self-cleaning application investigation [J]. Appl. Surf. Sci., 2023, 608: 155103
[11] Feng L B, Yan Z N, Shi X T, et al. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys [J]. Appl. Phys., 2018, 124A: 142
[12] Xu Y H, Li X L, Wang X Y, et al. Synergistic effect of micro-nano surface structure and surface grafting on the efficient fabrication of durable super-hydrophobic high-density polyethylene with self-cleaning and anti-icing properties [J]. Appl. Surf. Sci., 2023, 611: 155654
[13] Wang W, Dong C X, Liu S R, et al. Super-hydrophobic cotton aerogel with ultra-high flux and high oil retention capability for efficient oil/water separation [J]. Colloid. Surf., 2023, 657A: 130572
[14] Zhao M Q, Ma X Q, Chao Y X, et al. Super-hydrophobic magnetic fly ash coated polydimethylsiloxane (MFA@PDMS) sponge as an absorbent for rapid and efficient oil/water separation [J]. Polymers (Basel), 2022, 14: 3726
[15] Khedir K R, Saifaldeen Z S, Demirkan T M, et al. Robust superamphiphobic nanoscale copper sheet surfaces produced by a simple and environmentally friendly technique [J]. Adv. Eng. Mater., 2015, 17: 982
[16] Liu T, Chen S G, Cheng S, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater [J]. Electrochim. Acta, 2007, 52: 8003
[17] Bai Z G, Zhu J Y. A facile preparation method for corrosion-resistant copper superhydrophobic surfaces with ordered microstructures by etching [J]. Coatings, 2023, 13: 1151
[18] Meng X, Wang J L, Zhang J, et al. Electroplated super-hydrophobic Zn-Fe coating for corrosion protection on magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 3250
[19] Xi J M, Feng L, Jiang L. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces [J]. Appl. Phys. Lett., 2008, 92: 053102
[20] Guo M M, Liu M L, Zhao W, et al. Rapid fabrication of SERS substrate and superhydrophobic surface with different micro/nano-structures by electrochemical shaping of smooth Cu surface [J]. Appl. Surf. Sci., 2015, 353: 1277
[21] Wan X F, Li Y, Tian C, et al. Fabrication and properties of super-hydrophobic microstructures on magnesium alloys by laser-chemical etching [J]. Appl. Phys., 2022, 128A: 899
[22] Xiao Y T, Qi Y, Shen X J, et al. Preparation of a lotus-leaf-like coating with robust super-hydrophobicity and UV-resistant ability [J]. J. Inorg. Organomet. Polym. Mater., 2023, 33: 579
[23] Mohammadshahi S, Breveleri J, Ling H J. Fabrication and characterization of super-hydrophobic surfaces based on sandpapers and nano-particle coatings [J]. Colloid. Surf., 2023, 666A: 131358
[24] Lü C, Wang F Q, He C X, et al. Preparation of silicone-PCL composite particles with hierarchical structure and the super-hydrophobic fabrics via directly electrostatic spraying [J]. Surf. Coat. Technol., 2022, 449: 128933
[25] Ma Z Y. Exploitation of the factors influencing chemical reaction rate [J]. Modern Chem. Res., 2017, (2): 7
[25] 马志彦. 探究影响化学反应速率的因素 [J]. 当代化工研究, 2017, (2): 7
[26] Chu Z L, Seeger S, et al. Superamphiphobic surfaces [J]. Chem. Soc. Rev., 2014, 43: 2784
doi: 10.1039/c3cs60415b pmid: 24480921
[27] Yang J, Zhang Z Z, Xu X H. Superoleophobic textured aluminum surfaces [J]. New J. Chem., 2011, 35: 2422
[28] Ghaffari S, Aliofkhazraei M, Barati Darband G, et al. Review of superoleophobic surfaces: Evaluation, fabrication methods, and industrial applications [J]. Surf. Interfaces, 2019, 17: 100340
[29] Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on Al-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
[29] 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
[30] Deng R, Hu Y M, Wang L, et al. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces [J]. Appl. Surf. Sci., 2017, 402: 301
[31] Saleema N, Sarkar D K, Paynter R W, et al. Superhydrophobic aluminum alloy surfaces by a novel one-step process [J]. ACS Appl. Mater. Interfaces, 2010, 2: 2500
[32] Zheng L, Luo S. Fabrication of a durable superhydrophobic surface with corrosion resistance on copper [J]. Int. J. Electrochem. Sci., 2023, 18: 100093
[33] Ge B, Zhang Z Z, Men X H, et al. Sprayed superamphiphobic coatings on copper substrate with enhanced corrosive resistance [J]. Appl. Surf. Sci., 2014, 293: 271
[34] Esmailzadeh S, Khorsand S, Raeissi K, et al. Microstructural evolution and corrosion resistance of super-hydrophobic electrodeposited nickel films [J]. Surf. Coat. Technol., 2015, 283: 337
[1] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[2] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[3] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[4] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[5] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[6] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[7] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[8] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[9] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[10] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[11] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[12] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[13] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[14] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[15] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.