Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 901-908     CSTR: 32134.14.1005.4537.2023.270      DOI: 10.11902/1005.4537.2023.270
  研究报告 本期目录 | 过刊浏览 |
Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究
于佳汇, 王彤彤, 高云, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266100
Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel
YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
Jiahui YU, Tongtong WANG, Yun GAO, Rongjie GAO. Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 901-908.

全文: PDF(5844 KB)   HTML
摘要: 

通过连续离子层吸附法(SILAR)在TiO2纳米管上负载Bi2S3,通过XRD、SEM、XPS等手段对Bi2S3/TiO2纳米复合材料的形貌、结构、元素组成和价态进行表征。同时在模拟太阳光条件下进行光电化学性能测试。Bi2S3改性后复合材料的带隙减小,光生载流子复合率大幅下降,当Bi2S3循环5次时,TiO2纳米复合材料的光电化学性能最好。带隙减小到2.9 eV,光电流密度由改性前的200 μA·cm-2提升至550 μA·cm-2,是改性前的2.75倍;将其与304不锈钢耦合后,电位降至-1.0 V,比改性前的耦合电位低80 mV,可以进一步提升对304不锈钢的光生阴极保护效果。

关键词 光生阴极保护改性Bi2S3/TiO2304不锈钢    
Abstract

TiO2 nanotube arrays are decorated with Bi2S3 by a successive ionic layer adsorption and reaction (SILAR) method, aiming to enhance the photoelectric conversion ability of TiO2 and photogenerated cathodic protection performance of TiO2 nanotube arrays for 304 stainless steel. B-(x)/TiO2 nanotubes (x = 1,3,5,7) were prepared by changing the number of deposition cycles of Bi2S3. The morphology, structure, light response ability and photogenerated carrier separation efficiency of Bi2S3/TiO2 nanocomposites were examined by means of XRD, SEM and XPS. At the same time, the photoelectrochemical properties of Bi2S3/TiO2 nanocomposites were tested under simulated sunlight. In addition, the effect of the number of deposition cycles of Bi2S3 on the photocathodic protection performance of TiO2 nanocomposites was also studied. After Bi2S3 modification, the band gap of the composites decreases, and the recombination rate of photogenerated carriers decreases greatly. When a 5 cyclic deposition of Bi2S3 is adopted, the photoelectrochemical properties of the prepared nanocomposites are the best. Of which the band gap is reduced to 2.9 eV, and the photocurrent density is increased from 200 μA·cm-2 to 550 μA·cm-2 under the condition of turning on light, which is 2.75 times that of the bare TiO2 nanotube arrays. After coupling the modified nanocomposite with 304 stainless steel, the coupling potential can be reduced to -1.0 V under simulated sunlight, which is about 80 mV lower than the coupling potential before modification, which can further improve the photogenerated cathodic protection effect on 304 stainless steel.

Key wordsphotogenerated cathodic protection    modification    Bi2S3/TiO2    304 stainless steel
收稿日期: 2023-08-31      32134.14.1005.4537.2023.270
ZTFLH:  TG174  
基金资助:国家自然科学基金-山东省联合基金(U1706221)
通讯作者: 高荣杰,E-mail: dmh206@ouc.edu.cn,研究方向为阴极保护设计与检测
Corresponding author: GAO Rongjie, E-mail: dmh206@ouc.edu.cn
作者简介: 于佳汇,女,1999年生,硕士生
图1  TiO2纳米管的制备过程示意图
图2  Bi2S3 /TiO2纳米复合材料的制备过程示意图
图3  电化学测试装置示意图
图4  TiO2纳米管及Bi2S3/TiO2纳米复合材料的XRD谱
图5  TiO2纳米管,B-1/TiO2,B-3/TiO2,B-5/TiO2,B-7/TiO2纳米复合材料的SEM形貌图和B-5/TiO2纳米复合材料的EDS分析结果
图6  B-5/TiO2纳米复合材料的元素分布图
图7  B-5/TiO2纳米复合材料的XPS谱
图8  TiO2纳米管及B-5/TiO2纳米复合材料的紫外-可见漫反射谱的Tauc曲线图
图9  TiO2纳米管及B-x/TiO2纳米复合材料的光致发光光谱
图10  TiO2纳米复合材料在间歇可见光下的光生电流密度-时间曲线
图11  TiO2纳米复合材料耦合304不锈钢电极在间歇可见光下的电位变化
图12  模拟太阳光下TiO2纳米复合材料的Nyquist图及等效电路图
SampleRs / Ω·cm2Q1 / F·cm-2Rct / Ω·cm2n
TiO220.152.1 × 10-326130.83
B-1/TiO219.952.0 × 10-32372.00.80
B-3/TiO220.475.2 × 10-31136.00.68
B-5/TiO220.106.3 × 10-3463.50.60
B-7/TiO219.443.0 × 10-31829.00.73
表1  EIS拟合参数
图13  Bi2S3和TiO2半导体的能带结构示意图
[1] Zhang Y, Yin X Y, Yan F Y. Effect of halide concentration on tribocorrosion behaviour of 304SS in artificial seawater [J]. Corros. Sci., 2015, 99: 272
[2] Zhang Y, Yin X Y, Yan Y F, et al. Tribocorrosion behaviors of 304SS: effect of solution pH [J]. RSC Adv., 2015, 5: 17676
[3] Jiang J H, Zhang X Y, Jin Z Q. Research progress in photochemical cathodic protection technology [J]. Mar. Sci., 2021, 45(12): 150
[3] 蒋继宏, 张小影, 金祖权. 光电化学阴极保护技术研究进展 [J]. 海洋科学, 2021, 45(12): 150
[4] Chen F W, Liu B, Jian D H, et al. Research progress and existing problems of photocathodic protection technology [J]. J. Mater. Eng., 2021, 49(12): 83
[4] 陈凡伟, 刘 斌, 蹇冬辉 等. 光生阴极保护技术的研究进展及其存在的问题 [J]. 材料工程, 2021, 49(12): 83
doi: 10.11868/j.issn.1001-4381.2021.000469
[5] Subasri R, Shinohara T. Application of the photoeffect in TiO2 for cathodic protection of copper [J]. Electrochemistry, 2004, 72: 880
[6] Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics [J]. J. Phys. Chem., 2011, 115A: 13211
[7] Guo H X, Li L L, Su C, et al. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes [J]. Mater. Chem. Phys., 2021, 258: 123914
[8] Zheng L X, Teng F, Ye X Y, et al. Photo/electrochemical applications of metal sulfide/TiO2 heterostructures [J]. Adv. Energy Mater., 2020, 10: 1902355
[9] Luo J H, Wei H Y, Huang Q L, et al. Highly efficient core-shell CuInS2-Mn doped CdS quantum dot sensitized solar cells [J]. Chem. Commun., 2013, 49: 3881
[10] Yang L, Ma Y P, Liu J H, et al. Improving the performance of solid-state quantum dot-sensitized solar cells based on TiO2/CuInS2 photoelectrodes with annealing treatment [J]. RSC Adv., 2016, 6: 92869
[11] Yang Y Y, Zhang W W, Xu Y, et al. Ag2S decorated TiO2 nanosheets grown on carbon fibers for photoelectrochemical protection of 304 stainless steel [J]. Appl. Surf. Sci., 2019, 494: 841
[12] Cheng L Y, Ding H M, Chen C H, et al. Ag2S/Bi2S3 co-sensitized TiO2 nanorod arrays prepared on conductive glass as a photoanode for solar cells [J]. J. Mater. Sci., 2016, 27: 3234
[13] Hu J, Guan Z C, Liang Y, et al. Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection [J]. Corros. Sci., 2017, 125: 59
[14] Li H, Wang X T, Wei Q Y, et al. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light [J]. Nanoscale Res. Lett., 2017, 12: 80
[15] Li X L, Yang M, Zhu D, et al. Preparation of TiO2/Bi2S3 composite photo-anode through ultrasound-assisted successive ionic layer adsorption and reaction method for improving the photoelectric performance [J]. J. Electron. Mater., 2020, 49: 3242
[16] Zumeta-Dubé I, Ruiz-Ruiz V F, Díaz D, et al. TiO2 sensitization with Bi2S3 quantum dots: the inconvenience of sodium ions in the deposition procedure [J]. J. Phys. Chem., 2014, 118C: 11495
[17] Wang Q Y, Liu Z Y, Jin R C, et al. SILAR preparation of Bi2S3 nanoparticles sensitized TiO2 nanotube arrays for efficient solar cells and photocatalysts [J]. Sep. Purif. Technol., 2019, 210: 798
[18] Zhou M J, Zeng Z O, Zhong L. Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating [J]. Corros. Sci., 2009, 51: 1386
[19] Kubo T, Nakahira A. Local structure of TiO2-derived nanotubes prepared by the hydrothermal process [J]. J. Phys. Chem., 2008, 112C: 1658
[20] Antony R P, Mathews T, Dash S, et al. X-ray photoelectron spectroscopic studies of anodically synthesized self aligned TiO2 nanotube arrays and the effect of electrochemical parameters on tube morphology [J]. Mater. Chem. Phys., 2012, 132: 957
[21] He H C, Berglund S P, Xiao P, et al. Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance [J]. J. Mater. Chem., 2013, 1A: 12826
[22] Weng B, Zhang X, Zhang N, et al. Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: synthesis, formation mechanism, and photocatalytic application [J]. Langmuir, 2015, 31: 4314
doi: 10.1021/la504549y pmid: 25625414
[23] Chen L, He J, Yuan Q, et al. CuS-Bi2S3 hierarchical architectures: controlled synthesis and enhanced visible-light photocatalytic performance for dye degradation [J]. RSC Adv., 2015, 5: 33747
[24] Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals [J]. Electrochim. Acta, 2010, 55: 8717
[25] Li X L, Wang X Y, Liu J L, et al. Bismuth sulfide decorated TiO2 arrays heterojunction assembly for enhanced photoelectrochemical performance [J]. Optik, 2022, 252: 168522
[26] Su N, Ye M Y, Li J M, et al. Fabrication of ZIF-8/TiO2 composite film and its photogeneration cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 267
[26] 苏 娜, 叶梦颖, 李建民 等. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2022, 42: 267
[27] Wang W C, Wang X T, Wang N, et al. Bi2Se3 sensitized TiO2 nanotube films for photogenerated cathodic protection of 304 stainless steel under visible light [J]. Nanoscale Res. Lett., 2018, 13: 295
[28] Jiao Z B, Zhang Y, Chen T, et al. TiO2 nanotube arrays modified with Cr-Doped SrTiO3 nanocubes for highly efficient hydrogen evolution under visible light [J]. Chem. Eur. J., 2014, 20: 2654
[29] Bao C Y, Li J M, Ye M Y, et al. Preparation of TiO2 nanotube arrays in composite electrolytes and their photogenerated cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 759
[29] 鲍晨宇, 李建民, 叶梦颖 等. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2022, 42: 759
doi: 10.11902/1005.4537.2021.255
[30] Cai F G. Fabrication and photoelectrochemical properties study of Bi2S3/PbS-sensitized TiO2 nanotube arrays [D]. Chengdu: Southwest Jiaotong University, 2013
[30] 蔡芳共. Bi2S3、PbS敏化TiO2纳米管阵列的制备及其光电性能研究 [D]. 成都: 西南交通大学, 2013
[31] Wang B, Cao J T, Dong Y X, et al. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays [J]. Chem. Commun., 2018, 54: 806
[1] 李红玲, 郎五可. 环境友好防腐材料-聚苯胺纳米复合材料的制备及其研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 874-882.
[2] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[3] 李硕, 李希超, 赵经香, 戴作强, 徐斌, 孙明月, 郑莉莉. 基于涂层改性炮管寿命的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
[4] 叶梦颖, 于佳汇, 王彤彤, 高荣杰. Bi2S3/CdS/TiO2 纳米复合材料的制备及对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
[5] 王彤彤, 张隽睿, 高云, 高荣杰. NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[6] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[7] 李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[8] 曹京宜, 李敬, 殷文昌, 孟凡帝, 刘莉. 组胺改性环氧树脂及其对有机涂层性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[9] 陈施润, 陈文革, 钱颖, 张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
[10] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[11] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[12] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[13] 曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[14] 鲍晨宇, 李建民, 叶梦颖, 高荣杰. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[15] 戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.