|
|
Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究 |
于佳汇, 王彤彤, 高云, 高荣杰( ) |
中国海洋大学材料科学与工程学院 青岛 266100 |
|
Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel |
YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie( ) |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
引用本文:
于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
Jiahui YU,
Tongtong WANG,
Yun GAO,
Rongjie GAO.
Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 901-908.
[1] |
Zhang Y, Yin X Y, Yan F Y. Effect of halide concentration on tribocorrosion behaviour of 304SS in artificial seawater [J]. Corros. Sci., 2015, 99: 272
|
[2] |
Zhang Y, Yin X Y, Yan Y F, et al. Tribocorrosion behaviors of 304SS: effect of solution pH [J]. RSC Adv., 2015, 5: 17676
|
[3] |
Jiang J H, Zhang X Y, Jin Z Q. Research progress in photochemical cathodic protection technology [J]. Mar. Sci., 2021, 45(12): 150
|
[3] |
蒋继宏, 张小影, 金祖权. 光电化学阴极保护技术研究进展 [J]. 海洋科学, 2021, 45(12): 150
|
[4] |
Chen F W, Liu B, Jian D H, et al. Research progress and existing problems of photocathodic protection technology [J]. J. Mater. Eng., 2021, 49(12): 83
|
[4] |
陈凡伟, 刘 斌, 蹇冬辉 等. 光生阴极保护技术的研究进展及其存在的问题 [J]. 材料工程, 2021, 49(12): 83
doi: 10.11868/j.issn.1001-4381.2021.000469
|
[5] |
Subasri R, Shinohara T. Application of the photoeffect in TiO2 for cathodic protection of copper [J]. Electrochemistry, 2004, 72: 880
|
[6] |
Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics [J]. J. Phys. Chem., 2011, 115A: 13211
|
[7] |
Guo H X, Li L L, Su C, et al. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes [J]. Mater. Chem. Phys., 2021, 258: 123914
|
[8] |
Zheng L X, Teng F, Ye X Y, et al. Photo/electrochemical applications of metal sulfide/TiO2 heterostructures [J]. Adv. Energy Mater., 2020, 10: 1902355
|
[9] |
Luo J H, Wei H Y, Huang Q L, et al. Highly efficient core-shell CuInS2-Mn doped CdS quantum dot sensitized solar cells [J]. Chem. Commun., 2013, 49: 3881
|
[10] |
Yang L, Ma Y P, Liu J H, et al. Improving the performance of solid-state quantum dot-sensitized solar cells based on TiO2/CuInS2 photoelectrodes with annealing treatment [J]. RSC Adv., 2016, 6: 92869
|
[11] |
Yang Y Y, Zhang W W, Xu Y, et al. Ag2S decorated TiO2 nanosheets grown on carbon fibers for photoelectrochemical protection of 304 stainless steel [J]. Appl. Surf. Sci., 2019, 494: 841
|
[12] |
Cheng L Y, Ding H M, Chen C H, et al. Ag2S/Bi2S3 co-sensitized TiO2 nanorod arrays prepared on conductive glass as a photoanode for solar cells [J]. J. Mater. Sci., 2016, 27: 3234
|
[13] |
Hu J, Guan Z C, Liang Y, et al. Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection [J]. Corros. Sci., 2017, 125: 59
|
[14] |
Li H, Wang X T, Wei Q Y, et al. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light [J]. Nanoscale Res. Lett., 2017, 12: 80
|
[15] |
Li X L, Yang M, Zhu D, et al. Preparation of TiO2/Bi2S3 composite photo-anode through ultrasound-assisted successive ionic layer adsorption and reaction method for improving the photoelectric performance [J]. J. Electron. Mater., 2020, 49: 3242
|
[16] |
Zumeta-Dubé I, Ruiz-Ruiz V F, Díaz D, et al. TiO2 sensitization with Bi2S3 quantum dots: the inconvenience of sodium ions in the deposition procedure [J]. J. Phys. Chem., 2014, 118C: 11495
|
[17] |
Wang Q Y, Liu Z Y, Jin R C, et al. SILAR preparation of Bi2S3 nanoparticles sensitized TiO2 nanotube arrays for efficient solar cells and photocatalysts [J]. Sep. Purif. Technol., 2019, 210: 798
|
[18] |
Zhou M J, Zeng Z O, Zhong L. Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating [J]. Corros. Sci., 2009, 51: 1386
|
[19] |
Kubo T, Nakahira A. Local structure of TiO2-derived nanotubes prepared by the hydrothermal process [J]. J. Phys. Chem., 2008, 112C: 1658
|
[20] |
Antony R P, Mathews T, Dash S, et al. X-ray photoelectron spectroscopic studies of anodically synthesized self aligned TiO2 nanotube arrays and the effect of electrochemical parameters on tube morphology [J]. Mater. Chem. Phys., 2012, 132: 957
|
[21] |
He H C, Berglund S P, Xiao P, et al. Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance [J]. J. Mater. Chem., 2013, 1A: 12826
|
[22] |
Weng B, Zhang X, Zhang N, et al. Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: synthesis, formation mechanism, and photocatalytic application [J]. Langmuir, 2015, 31: 4314
doi: 10.1021/la504549y
pmid: 25625414
|
[23] |
Chen L, He J, Yuan Q, et al. CuS-Bi2S3 hierarchical architectures: controlled synthesis and enhanced visible-light photocatalytic performance for dye degradation [J]. RSC Adv., 2015, 5: 33747
|
[24] |
Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals [J]. Electrochim. Acta, 2010, 55: 8717
|
[25] |
Li X L, Wang X Y, Liu J L, et al. Bismuth sulfide decorated TiO2 arrays heterojunction assembly for enhanced photoelectrochemical performance [J]. Optik, 2022, 252: 168522
|
[26] |
Su N, Ye M Y, Li J M, et al. Fabrication of ZIF-8/TiO2 composite film and its photogeneration cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 267
|
[26] |
苏 娜, 叶梦颖, 李建民 等. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2022, 42: 267
|
[27] |
Wang W C, Wang X T, Wang N, et al. Bi2Se3 sensitized TiO2 nanotube films for photogenerated cathodic protection of 304 stainless steel under visible light [J]. Nanoscale Res. Lett., 2018, 13: 295
|
[28] |
Jiao Z B, Zhang Y, Chen T, et al. TiO2 nanotube arrays modified with Cr-Doped SrTiO3 nanocubes for highly efficient hydrogen evolution under visible light [J]. Chem. Eur. J., 2014, 20: 2654
|
[29] |
Bao C Y, Li J M, Ye M Y, et al. Preparation of TiO2 nanotube arrays in composite electrolytes and their photogenerated cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 759
|
[29] |
鲍晨宇, 李建民, 叶梦颖 等. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2022, 42: 759
doi: 10.11902/1005.4537.2021.255
|
[30] |
Cai F G. Fabrication and photoelectrochemical properties study of Bi2S3/PbS-sensitized TiO2 nanotube arrays [D]. Chengdu: Southwest Jiaotong University, 2013
|
[30] |
蔡芳共. Bi2S3、PbS敏化TiO2纳米管阵列的制备及其光电性能研究 [D]. 成都: 西南交通大学, 2013
|
[31] |
Wang B, Cao J T, Dong Y X, et al. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays [J]. Chem. Commun., 2018, 54: 806
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|