Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 303-311     CSTR: 32134.14.1005.4537.2023.088      DOI: 10.11902/1005.4537.2023.088
  研究报告 本期目录 | 过刊浏览 |
高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟
凌东1, 何坤1, 余靓2, 董立谨1(), 张华礼3, 李玉飞3, 王勤英1, 张智4
1.西南石油大学新能源与材料学院 成都 610500
2.国家管网集团西南管道兰成渝输油分公司 成都 610000
3.中国石油西南油气田分公司工程技术研究院 德阳 618300
4.西南石油大学石油与天然气工程学院 成都 610500
Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters
LING Dong1, HE Kun1, YU Liang2, DONG Lijin1(), ZHANG Huali3, LI Yufei3, WANG Qinying1, ZHANG Zhi4
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2.Southwest Pipeline Company Lanzhou–Chengdu–Chongqing Oil Transmission Branch, Chengdu 610000, China
3.Engineering Technology Research Institute, Southwest Oil & Gasfield Company, CNPC, Deyang 618300, China
4.School of Petroleum and Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
引用本文:

凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
Dong LING, Kun HE, Liang YU, Lijin DONG, Huali ZHANG, Yufei LI, Qinying WANG, Zhi ZHANG. Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 303-311.

全文: PDF(5477 KB)   HTML
摘要: 

采用腐蚀浸泡实验和有限元模拟研究了超级13Cr不锈钢在高温高压CO2环境中的点蚀行为,重点分析了腐蚀时间、温度和CO2分压对点蚀的影响。结果表明:高温高压腐蚀实验与有限元模拟的点蚀深度较为吻合,且平均点蚀深度随着浸泡时间、温度和CO2分压的增大而增大。有限元模拟可知点蚀坑内部由于阳离子水解使得内部酸化,并且pH随着温度降低和CO2分压的增加而下降。此外,点蚀坑内Fe2+浓度随着腐蚀时间的延长和温度的提高而增加,但CO2分压对其影响不大。

关键词 超级13Cr不锈钢点蚀有限元模拟高温高压    
Abstract

The pitting growth behavior of super 13Cr stainless steel in high-temperature and high-pressured CO2 containing artificial formation waters was comparatively assessed via immersion corrosion test and finit element simulation, focusing on the effect of corrosion time, temperature and partial pressure of CO2 on pitting corrosion. The results show that the pitting depth of super 13Cr stainless steel after high-temperature and high-pressure corrosion tests is consistent with that of finite element simulation, and the average pitting depth increases with the increase of immersion time, temperature and CO2 partial pressure. The finite element simulation shows that the interior of the pit is acidified due to cationic hydrolysis, and the pH value decreases with the decrease of temperature and the increase of CO2 partial pressure. In addition, Fe2+ concentration inside the pit increases with the increase of corrosion time and temperature while the partial pressure of CO2 has little effect.

Key wordssuper 13Cr stainless steel    pitting    finite element simulation    high temperature and pressure
收稿日期: 2023-03-27      32134.14.1005.4537.2023.088
ZTFLH:  TG171  
基金资助:国家自然科学基金(52001264);中国石油—西南石油大学创新联合体科技合作项目(2020CX040100)
通讯作者: 董立谨,E-mail: ljdong89@163.com,研究方向为油气田材料腐蚀与防护
Corresponding author: DONG Lijin, E-mail: ljdong89@163.com
作者简介: 凌东,男,1996年生,硕士生
Serial number

Time

d

Temperature

oC

CO2 partial pressure

MPa

120952.8
240952.8
360952.8
420602.8
5201502.8
620950.1
720951.0
表1  腐蚀浸泡实验参数
图1  有限元模型及网格划分
Reaction mechanismCurrent density equationInitial potential
V
Initial urrent density[19]
A·m-2
FeFe2++2e-IFe=IFe0×e0.735×EPOL-EFe-E'RT×CH+CH+ref×eHR1Tref-1T-0.6842.7 × 10-11
CrCr3++3e-ICr=ICr0×e0.735×EPOL-ECr-E'RT×CH+CH+ref×eHR1Tref-1T-0.9881.7 × 10-9
H++e-12H2Icorr=IH_0×e(EPOL-EH-E')/RT×(CH+CH+ref)-0.2242.0 × 10-4
H2O+e-12H2+OH-Icorr=IH2O_0×e(EPOL-EH2O-E')/RT-1.0728.0 × 10-10
表2  点蚀坑初始电位及电流密度
ProjectChemical reactionEquilibrium constant
CO2 solubilityCO2(g)CO2(aq)KH=CCO2/φPCO2
Hydration reactionCO2(aq)+H2OH2CO3K=CH2CO3/CCO2

H2CO3

dissociation

H2CO3H++HCO3-K1=CH+CHCO3-CH2CO3
HCO3- dissociationHCO3-H++CO32-K2=CH+CCO32-CHCO3-
表3  CO2环境下典型的化学反应和平衡常数[20]
Equilibrium
coefficient
60oC95oC150oC
KH1.17 × 10-27.7 1× 10-33.72 × 10-4
KH, f2.37 × 10-62.00 × 10-12.49 × 105
K14.96 × 10-44.09 × 10-42.97 × 10-4
K1, f9.52 × 1075.39 × 1084.51 × 109
K27.98 × 10-98.46 × 10-95.70 × 10-9
K2, f1.00 × 1091.00 × 1091.00 × 109
表4  不同温度下的平衡系数
Species concentration
mol·L-1
60oC95oC150oC
CO2 concentration3.14 × 10-12.06 × 10-19.95 × 10-3
H2CO3 concentration8.10 × 10-45.33 × 10-42.57 × 10-5
HCO3- concentration4.20 × 10-44.20 × 10-45.77 × 10-5
CO32- concentration3.51 × 10-94.91 × 10-92.49 × 10-9
pH3.023.143.88
表5  本体溶液边界处不同温度下初始条件
Species concentration
mol·L-1
0.1 MPa1 MPa2.8 MPa
CO2 concentration7.70 × 10-37.59 × 10-22.06 × 10-1
H2CO3 concentration1.99 × 10-51.96 × 10-45.33 × 10-4
HCO3- concentration4.46 × 10-51.49 × 10-44.20 × 10-4
CO32- concentration2.07 × 10-92.35 × 10-94.91 × 10-9
pH3.743.273.14
表6  本体溶液边界处不同压力下初始条件
图2  2.8 MPa CO2分压/95℃条件下浸泡20 d后典型的点蚀形貌
图3  不同时间、温度和CO2分压下的平均点蚀深度
图4  不同时间、温度和CO2分压下点蚀坑深度模拟与实验结果对比
图5  点蚀坑底部pH随时间变化规律
图6  不同温度和CO2分压条件下点蚀坑内溶液pH值随深度变化规律
图7  不同时间、温度和CO2分压对点蚀坑内部离子浓度分布的影响
1 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
1 葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
2 Zhang G C, Zhang H, Niu K, et al. Corrosion resistance of 13Cr stainless steel against high temperature and high pressure carbon dioxide[J]. Mater. Prot., 2012, 45(6): 58
2 张国超, 张 涵, 牛 坤 等. 高温高压下超级13Cr不锈钢抗CO2腐蚀性能[J]. 材料保护, 2012, 45(6): 58
3 Liu Y Z, Chang Z L, Zhao G X, et al. Corrosion behavior of Super 13%Cr martensitic stainless steel under ultra-deep, ultra-high pressure and high temperature oil and gas well environment[J]. Hot Work. Technol., 2012, 41(10): 71
3 刘艳朝, 常泽亮, 赵国仙 等. 超级13Cr不锈钢在超深超高压高温油气井中的腐蚀行为研究[J]. 热加工工艺, 2012, 41(10): 71
4 Lü X H, Zhao G X, Zhang J B, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 207
4 吕祥鸿, 赵国仙, 张建兵 等. 超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J]. 北京科技大学学报, 2010, 32: 207
5 Zhang C X, Qi Y M, Zhang Z H. Study on the corrosion behavior of super 13Cr stainless steel in environment with H2S and CO2 [J]. Bao-Steel Technol., 2020, (1): 7
5 张春霞, 齐亚猛, 张忠铧. 超级13Cr在H2S和CO2共存环境下的腐蚀行为影响研究[J]. 宝钢技术, 2020, (1): 7
6 Scheiner S, Hellmich C. Finite volume model for diffusion- and activation-controlled pitting corrosion of stainless steel[J]. Comput. Methods Appl. Mech. Eng., 2009, 198: 2898
doi: 10.1016/j.cma.2009.04.012
7 Bartosik Ł, Di Caprio D, Stafiej J. Cellular automata approach to corrosion and passivity phenomena[J]. Pure Appl. Chem., 2012, 85: 247
doi: 10.1351/PAC-CON-12-02-01
8 Taleb A, Vautrin-Ul C, Mendy H, et al. Mesoscopic modeling of corrosion processes: pitting morphology evolution[A]. DegiorgiVG, BrebbiaCA, AdeyRA. Simulation of Electrochemical Processes II[M]. WIT Press, 2007, 54: 13
9 Malki B, Baroux B. Computer simulation of the corrosion pit growth[J]. Corros. Sci., 2005, 47: 171
doi: 10.1016/j.corsci.2004.05.004
10 Liu J, Li Z L, Hou L, et al. Model-building for computational simulation of multi-pit corrosion process with cellular automata[J]. Chem. Eng. Mach., 2011, 38: 206
10 刘 静, 李自力, 侯 蕾 等. 元胞自动机方法模拟材料点蚀过程的建模过程[J]. 化工机械, 2011, 38: 206
11 Munn R, General A. Application of electrochemical principles to three-dimensional multi-metallic underwater structures[J]. US Naval Underwater Systems Center Technical Memorandum., 1977: 771183
12 Alkire R, Bergh T, Sani R L, et al. Predicting electrode shape change with use of finite element methods[J]. J. Electrochem. Soc., 1981, 125: 1981
doi: 10.1149/1.2131340
13 Amri J, Gulbrandsen E, Nogueira R P. Numerical simulation of a single corrosion pit in CO2 and acetic acid environments[J]. Corros. Sci., 2010, 52: 1728
doi: 10.1016/j.corsci.2010.01.010
14 Guo M L, Xing P G, Zheng J S. Pitting corrosion behavior of stainless steel 304 in carbon dioxide environments[J]. J. Iron Steel Res. Int., 2004, 11: 47
15 Malki B, Souier T, Baroux B. Influence of the alloying elements on pitting corrosion of stainless steels: A modeling approach[J]. J. Electrochem. Soc., 2008, 155: C583
doi: 10.1149/1.2996565
16 Fuller T F, Newman J. Experimental determination of the transport number of water in nafion 117 membrane[J]. J. Electrochem. Soc., 1992, 139: 1332
doi: 10.1149/1.2069407
17 Li T S, Wu J, Guo X L, et al. Activation energy of metal dissolution in local pit environments[J]. Corros. Sci., 2021, 193: 109901
doi: 10.1016/j.corsci.2021.109901
18 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: theory and verification[J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
19 Wang W, Sun H Y, Sun L J, et al. Numerical simulation for crevice corrosion of 304 stainless steel in sodium chloride solution[J]. Chem. Res. Chin. Univ., 2010, 26: 822
20 Nesic S, Sun W. 2.25-Corrosion in acid gas solutions[J]. Shreir's Corros., 2010, 2: 1270
21 Oddo J E, Tomson M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions[J]. J. Pet. Technol., 1982, 34: 1583
doi: 10.2118/10352-PA
22 Pan X, Ren Z, Lian J B, et al. Effect of heat treatment process on corrosion behavior of super 13Cr stainless steel in CO2-saturated oilfield formation aqueous solution[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 752
22 潘 鑫, 任 泽, 连景宝 等. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42: 752
23 Li D P, Zhang L, Shi F X, et al. Effect of temperature on the corrosion behavior of 13Cr stainless steel under a high CO2 partial pressure environment[J]. Chin. J. Eng., 2015, 37: 1463
23 李大朋, 张 雷, 石凤仙 等. 温度对13Cr不锈钢在高CO2分压环境中腐蚀行为的影响[J]. 工程科学学报, 2015, 37: 1463
24 Ma Z H. Evaluation of pitting corrosion performance of 13Cr series martensitic stainless steels[J]. Corros. Prot., 2013, 34: 819
24 马朝晖. 13Cr系列马氏体不锈钢的点蚀性能评价[J]. 腐蚀与防护, 2013, 34: 819
25 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
25 张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
26 Lü X H, Zhao G X, Fan Z H, et al. Effects of Cl- Concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure[J]. Mater. Prot., 2004, 37(6): 34
26 吕祥鸿, 赵国仙, 樊治海 等. 高温高压下Cl-浓度、CO2分压对13Cr不锈钢点蚀的影响[J]. 材料保护, 2004, 37(6): 34
27 Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry[J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
28 Pots B F M. Mechanistic models for the prediction of CO2 corrosion rates under multi-phase flow conditions[R]. Houston: NACE Internation, 1995
29 Deng B, Jiang Y M, Hao Y W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
29 邓 博, 蒋益明, 郝允卫 等. F-和Cl-对316不锈钢临界点蚀温度的协同作用[J]. 中国腐蚀与防护学报, 2008, 28: 30
[1] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[2] 郭诗雯, 吴浩志, 董绍华, 陈林, 程玉峰. 含双腐蚀缺陷管道的氢浓度分布模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[3] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[4] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[5] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[6] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[7] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[8] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[9] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[10] 包晔峰, 武竹雨, 陈哲, 郭林坡, 王子睿, 曹冲, 宋亓宁. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[11] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[12] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[13] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[14] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[15] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.