|
|
高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟 |
凌东1, 何坤1, 余靓2, 董立谨1( ), 张华礼3, 李玉飞3, 王勤英1, 张智4 |
1.西南石油大学新能源与材料学院 成都 610500 2.国家管网集团西南管道兰成渝输油分公司 成都 610000 3.中国石油西南油气田分公司工程技术研究院 德阳 618300 4.西南石油大学石油与天然气工程学院 成都 610500 |
|
Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters |
LING Dong1, HE Kun1, YU Liang2, DONG Lijin1( ), ZHANG Huali3, LI Yufei3, WANG Qinying1, ZHANG Zhi4 |
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China 2.Southwest Pipeline Company Lanzhou–Chengdu–Chongqing Oil Transmission Branch, Chengdu 610000, China 3.Engineering Technology Research Institute, Southwest Oil & Gasfield Company, CNPC, Deyang 618300, China 4.School of Petroleum and Gas Engineering, Southwest Petroleum University, Chengdu 610500, China |
引用本文:
凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
Dong LING,
Kun HE,
Liang YU,
Lijin DONG,
Huali ZHANG,
Yufei LI,
Qinying WANG,
Zhi ZHANG.
Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High-temperature and High-pressured CO2 Containing Artificial Formation Waters[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 303-311.
1 |
Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
|
1 |
葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
|
2 |
Zhang G C, Zhang H, Niu K, et al. Corrosion resistance of 13Cr stainless steel against high temperature and high pressure carbon dioxide[J]. Mater. Prot., 2012, 45(6): 58
|
2 |
张国超, 张 涵, 牛 坤 等. 高温高压下超级13Cr不锈钢抗CO2腐蚀性能[J]. 材料保护, 2012, 45(6): 58
|
3 |
Liu Y Z, Chang Z L, Zhao G X, et al. Corrosion behavior of Super 13%Cr martensitic stainless steel under ultra-deep, ultra-high pressure and high temperature oil and gas well environment[J]. Hot Work. Technol., 2012, 41(10): 71
|
3 |
刘艳朝, 常泽亮, 赵国仙 等. 超级13Cr不锈钢在超深超高压高温油气井中的腐蚀行为研究[J]. 热加工工艺, 2012, 41(10): 71
|
4 |
Lü X H, Zhao G X, Zhang J B, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 207
|
4 |
吕祥鸿, 赵国仙, 张建兵 等. 超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J]. 北京科技大学学报, 2010, 32: 207
|
5 |
Zhang C X, Qi Y M, Zhang Z H. Study on the corrosion behavior of super 13Cr stainless steel in environment with H2S and CO2 [J]. Bao-Steel Technol., 2020, (1): 7
|
5 |
张春霞, 齐亚猛, 张忠铧. 超级13Cr在H2S和CO2共存环境下的腐蚀行为影响研究[J]. 宝钢技术, 2020, (1): 7
|
6 |
Scheiner S, Hellmich C. Finite volume model for diffusion- and activation-controlled pitting corrosion of stainless steel[J]. Comput. Methods Appl. Mech. Eng., 2009, 198: 2898
doi: 10.1016/j.cma.2009.04.012
|
7 |
Bartosik Ł, Di Caprio D, Stafiej J. Cellular automata approach to corrosion and passivity phenomena[J]. Pure Appl. Chem., 2012, 85: 247
doi: 10.1351/PAC-CON-12-02-01
|
8 |
Taleb A, Vautrin-Ul C, Mendy H, et al. Mesoscopic modeling of corrosion processes: pitting morphology evolution[A]. DegiorgiVG, BrebbiaCA, AdeyRA. Simulation of Electrochemical Processes II[M]. WIT Press, 2007, 54: 13
|
9 |
Malki B, Baroux B. Computer simulation of the corrosion pit growth[J]. Corros. Sci., 2005, 47: 171
doi: 10.1016/j.corsci.2004.05.004
|
10 |
Liu J, Li Z L, Hou L, et al. Model-building for computational simulation of multi-pit corrosion process with cellular automata[J]. Chem. Eng. Mach., 2011, 38: 206
|
10 |
刘 静, 李自力, 侯 蕾 等. 元胞自动机方法模拟材料点蚀过程的建模过程[J]. 化工机械, 2011, 38: 206
|
11 |
Munn R, General A. Application of electrochemical principles to three-dimensional multi-metallic underwater structures[J]. US Naval Underwater Systems Center Technical Memorandum., 1977: 771183
|
12 |
Alkire R, Bergh T, Sani R L, et al. Predicting electrode shape change with use of finite element methods[J]. J. Electrochem. Soc., 1981, 125: 1981
doi: 10.1149/1.2131340
|
13 |
Amri J, Gulbrandsen E, Nogueira R P. Numerical simulation of a single corrosion pit in CO2 and acetic acid environments[J]. Corros. Sci., 2010, 52: 1728
doi: 10.1016/j.corsci.2010.01.010
|
14 |
Guo M L, Xing P G, Zheng J S. Pitting corrosion behavior of stainless steel 304 in carbon dioxide environments[J]. J. Iron Steel Res. Int., 2004, 11: 47
|
15 |
Malki B, Souier T, Baroux B. Influence of the alloying elements on pitting corrosion of stainless steels: A modeling approach[J]. J. Electrochem. Soc., 2008, 155: C583
doi: 10.1149/1.2996565
|
16 |
Fuller T F, Newman J. Experimental determination of the transport number of water in nafion 117 membrane[J]. J. Electrochem. Soc., 1992, 139: 1332
doi: 10.1149/1.2069407
|
17 |
Li T S, Wu J, Guo X L, et al. Activation energy of metal dissolution in local pit environments[J]. Corros. Sci., 2021, 193: 109901
doi: 10.1016/j.corsci.2021.109901
|
18 |
Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: theory and verification[J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
|
19 |
Wang W, Sun H Y, Sun L J, et al. Numerical simulation for crevice corrosion of 304 stainless steel in sodium chloride solution[J]. Chem. Res. Chin. Univ., 2010, 26: 822
|
20 |
Nesic S, Sun W. 2.25-Corrosion in acid gas solutions[J]. Shreir's Corros., 2010, 2: 1270
|
21 |
Oddo J E, Tomson M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions[J]. J. Pet. Technol., 1982, 34: 1583
doi: 10.2118/10352-PA
|
22 |
Pan X, Ren Z, Lian J B, et al. Effect of heat treatment process on corrosion behavior of super 13Cr stainless steel in CO2-saturated oilfield formation aqueous solution[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 752
|
22 |
潘 鑫, 任 泽, 连景宝 等. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42: 752
|
23 |
Li D P, Zhang L, Shi F X, et al. Effect of temperature on the corrosion behavior of 13Cr stainless steel under a high CO2 partial pressure environment[J]. Chin. J. Eng., 2015, 37: 1463
|
23 |
李大朋, 张 雷, 石凤仙 等. 温度对13Cr不锈钢在高CO2分压环境中腐蚀行为的影响[J]. 工程科学学报, 2015, 37: 1463
|
24 |
Ma Z H. Evaluation of pitting corrosion performance of 13Cr series martensitic stainless steels[J]. Corros. Prot., 2013, 34: 819
|
24 |
马朝晖. 13Cr系列马氏体不锈钢的点蚀性能评价[J]. 腐蚀与防护, 2013, 34: 819
|
25 |
Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
|
25 |
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
|
26 |
Lü X H, Zhao G X, Fan Z H, et al. Effects of Cl- Concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure[J]. Mater. Prot., 2004, 37(6): 34
|
26 |
吕祥鸿, 赵国仙, 樊治海 等. 高温高压下Cl-浓度、CO2分压对13Cr不锈钢点蚀的影响[J]. 材料保护, 2004, 37(6): 34
|
27 |
Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry[J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
|
28 |
Pots B F M. Mechanistic models for the prediction of CO2 corrosion rates under multi-phase flow conditions[R]. Houston: NACE Internation, 1995
|
29 |
Deng B, Jiang Y M, Hao Y W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
|
29 |
邓 博, 蒋益明, 郝允卫 等. F-和Cl-对316不锈钢临界点蚀温度的协同作用[J]. 中国腐蚀与防护学报, 2008, 28: 30
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|