Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 312-322     CSTR: 32134.14.1005.4537.2023.186      DOI: 10.11902/1005.4537.2023.186
  研究报告 本期目录 | 过刊浏览 |
金属铝用复配缓蚀剂协同缓蚀作用研究
柳泽邦1, 冉博元2,3, 裴恒1, 罗凯林1, 赵智斌1, 韩鹏1(), 强玉杰2,3()
1.中国矿业大学(北京)化学与环境工程学院 北京 100083
2.北京科技大学 国家材料服役安全科学中心 北京 100083
3.吉县英才博士工作站 临汾 042200
Synergistic Corrosion Inhibition Effect of a Compound Inhibitor for Aluminum
LIU Zebang1, RAN Boyuan2,3, PEI Heng1, LUO Kailin1, ZHAO Zhibin1, HAN Peng1(), QIANG Yujie2,3()
1.School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
2.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3.Talented Doctoral Workstation of Jixian, Linfen 042200, China
引用本文:

柳泽邦, 冉博元, 裴恒, 罗凯林, 赵智斌, 韩鹏, 强玉杰. 金属铝用复配缓蚀剂协同缓蚀作用研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 312-322.
Zebang LIU, Boyuan RAN, Heng PEI, Kailin LUO, Zhibin ZHAO, Peng HAN, Yujie QIANG. Synergistic Corrosion Inhibition Effect of a Compound Inhibitor for Aluminum[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 312-322.

全文: PDF(14493 KB)   HTML
摘要: 

采用理论模拟与实验分析方法,将4-巯基吡啶(4MP)、十二烷基硫酸钠(SDS)和4MP-SDS复配缓蚀剂作为金属铝缓蚀剂,对其在3.5% (质量分数)NaCl溶液中的缓蚀行为进行了研究。结果表明,加注缓蚀剂可有效降低自腐蚀电流密度,缓蚀剂加注浓度提高对改善缓蚀剂脱附电位具有促进作用,缓蚀效率顺序为4MP + SDS > SDS > 4MP,失重测试结果与电化学测试结果表现出较好的一致性。复配缓蚀剂加注后,可在金属表面吸附形成缓蚀剂膜层,增大腐蚀性离子扩散和迁移的阻力,样品腐蚀速率减慢,表面维持较好的金属光泽,表现出均匀腐蚀形态特征。

关键词 腐蚀缓蚀剂协同效应理论模拟    
Abstract

The corrosion inhibition behavior of 4-mercaptopyridine (4MP), sodium dodecyl sulfate (SDS), and compound inhibitor 4MP-SDS for aluminum in 3.5%NaCl solution was comparatively investigated via experimental test and digital simulation. The results show that the presence of corrosion inhibitor could effectively reduce the free-corrosion current density. Moreover, the increase dosage of corrosion inhibitor has a positive effect on the enhancing desorption potential of corrosion inhibitor. The corrosion inhibition efficiency of the three inhibitors may be ranked as 4MP + SDS > SDS > 4MP. The mass loss test results show good agreement with the electrochemical test results. After the injection of compound inhibitor, a corrosion inhibitor film can form on the metal surface. Thus, the resistance to the diffusion and migration of corrosive ions increased and the corrosion rate of Al slowed down, correspondingly, the Al surface maintains a good metallic luster and shows the characteristics of a uniform corrosion pattern. In addition, the anti-corrosion mechanism of the compound inhibitor 4MP + SDS was revealed by molecular dynamics (MD) simulation. The compound inhibitor 4MP + SDS showed greater ability to slow down the build-up of interfacial water layers, increase the surface coverage, and the bonding effect is more stable, compared with the presence of a single 4MP or SDS, demonstrating the strong adsorption of the compound inhibitor on Al, while the best anti-corrosion performance.

Key wordsaluminum    corrosion    corrosion inhibitor    synergistic effect    theoretical simulation
收稿日期: 2023-06-05      32134.14.1005.4537.2023.186
ZTFLH:  TG174  
基金资助:中央高校基本科研业务费专项资金(2023JCCXJD01);教育部产学合作协同育人项目(220706429013009);中国矿业大学(北京)大学生创新训练项目(202304050)
通讯作者: 韩鹏,E-mail: hanpeng972@163.com,研究方向为金属腐蚀与防护,共伴生资源高效利用;
强玉杰,E-mail: qiangyujie@ustb.edu.cn,研究方向为功能防护涂层与缓蚀剂
Corresponding author: HAN Peng, E-mail: hanpeng972@163.com;
QIANG Yujie, E-mail: qiangyujie@ustb.edu.cn
作者简介: 柳泽邦,男,1999年生,硕士生
图1  在25℃的3.5%NaCl溶液中添加不同浓度缓蚀剂后测得的开路电位
图2  在25℃的3.5%NaCl溶液中添加不同浓度缓蚀剂后测得的极化曲线
InhibitorConcentration
g·L-1
-Ecorr
mV
Icorr
μA·cm-2
ba
mV·dec-1
bc
mV·dec-1
η / %
Inhibitor free-1189.09.7479557.3285.04-
4MP0.0251129.24.0201737.7298.458.76
0.3751126.53.4650245.0387.264.45
0.5001044.32.2682489.8322.876.73
0.6251008.51.4989335.6402.284.62
0.750944.11.3597372.5330.786.05
SDS0.0251040.73.1141236.5599.868.05
0.375974.91.6865102.1377.882.70
0.500967.91.5423263.6432.884.18
0.625941.91.1793180.9434.587.90
0.750918.80.126898.4472.088.44
SDS+4MP0.0251171.11.7146141.5177.682.41
0.3751133.41.0031213.1299.889.71
0.5001043.30.6456142.0149.093.38
0.625848.00.4565136.7152.095.32
0.750986.40.632595.6184.393.51
表1  在25℃的3.5%NaCl溶液中添加不同浓度缓蚀剂后测得的极化曲线拟合参数
图3  在25℃的3.5%NaCl溶液中添加不同浓度缓蚀剂后测得的Nyquist 曲线
图4  电化学阻抗谱拟合等效电路
InhibitorConcentration
g·L-1
Cdl
μF·cm-2
Rct
Ω·cm2
η / %
Inhibitor free-57.71930-
4MP0.02553.62104611.09
0.37543.87121323.33
0.50040.86255363.57
0.62537.77469280.18
0.75031.74729787.26
SDS0.02539.37205854.81
0.37535.78523882.25
0.50037.78542082.84
0.62533.16965290.36
0.75031.921099091.53
4MP +0.02548.25461879.86
SDS0.37526.09949790.21
0.5002.7662370096.08
0.6252.7064253097.81
0.7503.7032862096.75
表2  在25℃的3.5%NaCl溶液中添加不同浓度缓蚀剂后测得的Nyquist曲线拟合参数
InhibitorAverage corrosion rate / mm·a-1η / %
Inhibitor free17.8999-
4MP11.359636.54
SDS7.779656.54
4MP+SDS0.963894.62
表3  金属Al在不同缓蚀剂添加条件下的腐蚀速率及缓蚀效率
图5  金属Al在未添加以及添加0.625 g/L不同缓蚀剂的3.5%NaCl溶液中腐蚀240 h后表面形貌
图6  金属Al在添加0.625 g/L缓蚀剂的3.5%NaCl溶液中腐蚀后表面红外光谱图
图7  溶液/缓蚀剂/金属界面模型体系分子动力学平衡判据
图8  分子动力学模拟获得的缓蚀剂在金属Al表面吸附形态结构
图9  缓蚀剂及其复配体系在金属表面吸附成键作用图
图10  添加缓蚀剂对金属/缓蚀剂/溶液界面处水分子分布的影响
1 Ren Y L, Huang C Y. The production technology and the trend of aluminum alloys for automotive body sheet[J]. Light Alloy Fabr. Technol., 2022, 50(5): 1
1 任月路, 黄程毅. 铝合金汽车板的生产技术及其发展趋势[J]. 轻合金加工技术, 2022, 50(5): 1
2 Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
2 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 507
doi: 10.11902/1005.4537.2021.120
3 Liu J C. Alcoa combines 3D printing with hot isostatic pressing technology to improve additive manufacturing performance[J]. Foundry, 2016, 65: 489
3 刘金城. 美国美铝公司将3D打印与热等静压技术结合提高增材制造效能[J]. 铸造, 2016, 65: 489
4 Li X, Zhang C, Wang J S, et al. Research progress on corrosion behavior and protection technology of magnesium alloys[J]. Aeron. Manuf. Technol., 2021, 64(19): 59
4 李鑫, 张弛, 王俊升 等. 镁合金腐蚀行为与防护技术研究进展[J]. 航空制造技术, 2021, 64(19): 59
5 Tian W M, Chao B X, Li Z Y, et al. Effects of grain size on passivation of metals-A[J]. Fail. Anal. Prev., 2018, 13: 130
5 田文明, 巢昺轩, 李智勇 等. 晶粒尺寸影响金属钝化行为的研究进展[J]. 失效分析与预防, 2018, 13: 130
6 Wu J, Luo L, Liu Y, et al. Research progress on corrosion resistance of Mg-Al Magnesium Alloy[J]. Corros. Prot., 2018, 39: 651
6 吴进, 罗岚, 刘勇 等. Mg-Al系镁合金的耐蚀性能研究进展[J]. 腐蚀与防护, 2018, 39: 651
7 Zhou Y H, Tian X L, Han X J, et al. Research progress of inhibitors for aluminum and its alloys in NaCl solution[J]. Corros. Sci. Prot. Technol., 2010, 22: 52
7 周育红, 田秀丽, 韩喜江 等. 铝及其合金在NaCl溶液中缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2010, 22: 52
8 Xiao H G, Huang W Q, Tang Z Q, et al. Influence of corrosion products of carbon steel on the corrosion of aluminum in SCAL indirect air cooler system[J]. Corros. Prot., 2019, 40: 799
8 肖海刚, 黄万启, 汤自强 等. SCAL型间冷系统中碳钢腐蚀产物对铝腐蚀行为的影响[J]. 腐蚀与防护, 2019, 40: 799
9 Wu Y H, Luo S X, Gou H. Effects of simulated acid rain on the corrosion behaviors of aluminum in soil[J]. Mater. Rep., 2012, 26(20): 61
9 伍远辉, 罗宿星, 勾华. 模拟酸雨对铝在土壤中腐蚀行为的影响[J]. 材料导报, 2012, 26(20): 61
10 Yang F, Hu S S. The process of pitting corrosion of aluminum in acid solutions[J]. Educ. Chem., 2011, (12): 73
10 杨帆, 胡尚生. 铝在酸溶液中的点腐蚀过程[J]. 化学教学, 2011, (12): 73
11 He J, Yu H, Fu Z Y, et al. Effect of water-soluble corrosion inhibitor on corrosion behavior of Q235 pipeline steel for construction[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1041
11 何静, 于航, 傅梓瑛 等. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43: 1041
doi: 10.11902/1005.4537.2022.372
12 Xiao S, Sun Y B, Wang S H, et al. H2S corrosion behavior of L80 steel and performance of H2S corrosion inhibitor[J]. Corros. Prot., 2023, 44(1): 30
12 肖洒, 孙玉豹, 王少华 等. L80钢的H2S腐蚀行为及H2S缓蚀剂的性能[J]. 腐蚀与防护, 2023, 44(1): 30
13 Kang B S, Qi X, Qi Q Y, et al. Synergistic corrosion inhibition effect of composite corrosion inhibitor on carbonsteel in softened water[J]. Plat. Finish., 2023, 45(3): 1
13 康保生, 齐心, 齐千一 等. 复合缓蚀剂在软化水中对低碳钢的协同缓蚀作用[J]. 电镀与精饰, 2023, 45(3): 1
14 Zhang F R Z, Zhang Y X, Zhang J X, et al. Progress on high-temperature (90~180 ℃) corrosion systems for oilfield acidizing[J]. Oilfield Chem., 2023, 40: 159
14 张丰润泽, 张艺夕, 郑憬希 等. 油田酸化用高温(90~180℃)缓蚀体系的研究现状[J]. 油田化学, 2023, 40: 159
15 Chen J Q, Hou D L, Xiao H, et al. Corrosion inhibition on carbon steel in acidic solution by carbon dots prepared from waste Longan shells[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 629
15 陈佳起, 侯道林, 肖晗 等. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 629
doi: 10.11902/1005.4537.2021.214
16 Zhu H L, Lu X M, Li X F, et al. Synthesis, corrosion inhibition and bactericidal performance of an ammonium salt surfactant containing thiadiazole[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 51
16 朱海林, 陆小猛, 李晓芬 等. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 51
doi: 10.11902/1005.4537.2021.082
17 Huang M, Wang L Z, Ma X Q, et al. Synergistic inhibition effect of walnut green husk extract and Nd(NO3)3 on Aluminum in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 471
17 黄苗, 王丽姿, 马晓青 等. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43: 471
doi: 10.11902/1005.4537.2022.157
18 Li X H, Xu X, Lei R, et al. Synergistic inhibition effect of walnut green husk extract complex inhibitors on steel in phosphoric acid[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 358
18 李向红, 徐昕, 雷然 等. 磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2022, 42: 358
doi: 10.11902/1005.4537.2021.160
19 Chang J Y, Lu Y, Zhao J M. Corrosion inhibition of carbon steel by the combination of sodium gluconate and dimethyl aminopropyl methacrylamide[J]. J. Beijing Univ. Chem. Technol. Nat. Sci. Ed., 2021, 48(4): 33
19 常佳宇, 陆原, 赵景茂. 葡萄糖酸钠与二甲氨基丙基甲基丙烯酰胺复配对碳钢缓蚀性能的影响[J]. 北京化工大学学报(自然科学版), 2021, 48(4): 33
doi: 10.13543/j.bhxbzr.2021.04.004
20 Cheng Z J, Duan L D, Chi S, et al. Inhibition effect of quaternary composite corrosion inhibitor on carbon steel in neutral NaCl solution[J]. Corros. Prot., 2021, 42(1): 7
20 程正骏, 段立东, 池伸 等. 四元复合型缓蚀剂在中性NaCl溶液中对碳钢的缓蚀作用[J]. 腐蚀与防护, 2021, 42(1): 7
[1] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[2] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[3] 周兰欣, 张丽萍, 汤燕, 陈柯宇, 周剑军, 师超, 邵亚薇, 刘光明. 植酸锌的制备及其对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
[4] 李国新, 陈华湘, 伍扬帆. CSA-OPC基修补材料的耐海水腐蚀性及其机理研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 462-470.
[5] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[6] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[7] 龙梦翔, 付桂翠, 万博, 张钟庆. 基于K-means++聚类算法和SSIM指标的金属板材腐蚀区域识别[J]. 中国腐蚀与防护学报, 2024, 44(2): 437-444.
[8] 李文杰, 车晓钰, 唐永存, 刘光明, 田文明, 何华林, 刘晨辉. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[9] 杨胜杰, 高燕, 高旭, 赵鹏, 吴伟, 于金山, 张俊喜. 双功能铝酸钙改性硅溶胶钢筋涂层[J]. 中国腐蚀与防护学报, 2024, 44(2): 405-412.
[10] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[11] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[12] 王智慧, 吴雷, 姜懿珊, 张弦, 万响亮, 李光强, 吴开明. 形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
[13] 郭诗雯, 吴浩志, 董绍华, 陈林, 程玉峰. 含双腐蚀缺陷管道的氢浓度分布模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[14] 李婷玉, 魏洁, 陈楠, 万晔, 董俊华. 用于大气环境的电化学传感器的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[15] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.