Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 229-236     CSTR: 32134.14.1005.4537.2023.003      DOI: 10.11902/1005.4537.2023.003
  研究报告 本期目录 | 过刊浏览 |
磁场作用下5083铝合金腐蚀行为研究
熊伊铭1, 梅婉1, 王泽华1(), 余瑞1, 徐诗瑶1, 吴磊2, 张欣1,2()
1.河海大学力学与材料学院 南京 211100
2.江苏风力发电工程技术中心 南京 210008
Corrosion Behavior of 5083 Al-alloy under Magnetic Field
XIONG Yiming1, MEI Wan1, WANG Zehua1(), YU Rui1, XU Shiyao1, WU Lei2, ZHANG Xin1,2()
1.College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2.Jiangsu Technical Center for Wind Energy Engineering, Nanjing 210008, China
引用本文:

熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
Yiming XIONG, Wan MEI, Zehua WANG, Rui YU, Shiyao XU, Lei WU, Xin ZHANG. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 229-236.

全文: PDF(6162 KB)   HTML
摘要: 

采用浸泡实验、电化学实验,通过扫描电子显微镜 (SEM)、能谱分析仪 (EDS) 和电化学工作站等设备研究了磁场作用下5083铝合金腐蚀行为,探索了磁场对铝合金腐蚀的作用规律。研究结果表明:与普通环境相比,磁场影响了铝合金腐蚀过程中带电粒子运动,抑制Cl-对钝化膜的破坏作用,导致5083铝合金开路电位和点蚀电位的升高,腐蚀电流密度的降低,合金浸泡后表面的点蚀坑数量和尺寸降低。磁场能够降低5083铝合金的点蚀倾向和腐蚀速率,随着磁场强度的增加,抑制腐蚀的作用越明显。

关键词 5083铝合金磁场腐蚀行为点蚀    
Abstract

The corrosion behavior of 5083 Al-alloy under magnetic field was studied by immersion test, electrochemical measurement, scanning electron microscope (SEM), energy spectrum analyzer (EDS) and electrochemical workstation, et al. The results indicated that the magnetic field could affect the motion of charged particles in the corrosive medium and inhibited the effect of destroying effect of Cl- on passivation film. The applied magnetic field could rise the free corrosion- and pitting corrosion- potentials, and reduce the corrosion current density of 5083 Al-alloy. At the same time, the number and size of pits under magnetic field were lower than those without applied magnetic field. Magnetic field can reduce the pitting sensitivity and corrosion rate of 5083 Al-alloy. The inhibition effect is enhanced with the increase of magnetic field intensity.

Key words5083 Al-alloy    magnetic field    corrosion behavior    pitting corrosion
收稿日期: 2023-01-09      32134.14.1005.4537.2023.003
ZTFLH:  TG.174.442  
基金资助:江苏风力发电工程技术中心开放基金(ZK22-03-08)
通讯作者: 王泽华,E-mail: zhwang@hhu.edu.cn,研究方向为金属成型技术,热喷涂技术
张欣,E-mail: zhangxin.007@163.com,研究方向为先进铝合金制备与加工,热喷涂技术
Corresponding author: WANG Zehua, E-mail: zhwang@hhu.edu.cn
ZHANG Xin, E-mail: zhangxin.007@163.com
作者简介: 熊伊铭,男,2000年生,硕士生
图1  磁场对5083铝合金浸泡腐蚀失重的影响
图2  不同磁场强度下5083铝合金腐蚀30 d后的形貌
图3  不同磁场强度下5083铝合金浸泡30 d后微观腐蚀SEM形貌
PositionOMgAlCl
A49.397.6237.725.28
B47.748.3138.755.21
C48.295.3044.591.82
表1  不同磁场强度下5083铝合金浸泡30 d试样表面元素分析
图4  5083铝合金在不同磁场强度下开路电位随时间变化曲线
图5  不同磁场强度下5083铝合金的Nyquist和Bode图及等效电路图
Magnetic field strength / TRsQ1n1R1Q2n2R2
Ω·cm2F·cm2(0 < n < 1)Ω·cm2F·cm2(0 < n < 1)Ω·cm2
08.8361.75 × 10-50.919931617.05 × 10-40.72243584
0.26.4742.26 × 10-50.906947774.60 × 10-30.95454153
0.48.3171.30 × 10-50.880287734.19 × 10-30.866614100
表2  不同磁场强度下5083铝合金阻抗谱等效电路的电化学参数
图6  不同磁场强度下5083铝合金浸泡不同时间的动电位极化曲线
TimehMF / TEcorrVIcorrμA·cm-2EpitVRpΩ·cm2

0

0-1.1568.735-0.765128.53
0.2-1.1348.716-0.749267.46
0.4-1.1025.842-0.738353.27

24

0-1.20838.378-0.736175.86
0.2-1.15315.984-0.715193.95
0.4-1.1428.936-0.703301.74
表3  不同磁场强度下5083铝合金浸泡0和24 h的极化曲线拟合参数
1 Lv Z P, Huang D L, Yang W. Magnetic field induced variation of open circuit state of iron in chloride solutions [J]. Corros. Prot., 2002, 23: 185
1 吕战鹏, 黄德伦, 杨 武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化 [J]. 腐蚀与防护, 2002, 23: 185
2 Yang Y, Zhang Q B, Zhu W C, et al. Effect of magnetic field on corrosion behavior of X52 pipeline steel in NaCl Solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 501
2 杨 永, 张庆保, 朱万成 等. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 501
3 Jiang C, Ma B J. Effect of magnetic field on the corrosion characteristics of AZ31B magnesium alloy in NaCl solutions with two different concentrations [J]. Mater. Prot., 2021, 54(1): 7
3 姜 超, 马保吉. 磁场对AZ31B镁合金在2种浓度NaCl溶液中腐蚀特性的影响 [J]. 材料保护, 2021, 54(1): 7
4 Huang L P, Zhang X, Xiong Y M, et al. Corrosion behavior of Al-3.0-Mg-xRE/Fe alloys under magnetic field of different intensities [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 833
4 黄连鹏, 张 欣, 熊伊铭 等. 不同磁场强度下铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 833
doi: 10.11902/1005.4537.2021.247
5 Zhang X, Wang Z H, Zhou Z H, et al. Effects of magnetic field and rare earth addition on corrosion behavior of Al-3.0wt.% Mg alloy [J]. J. Alloy. Compd., 2017, 698: 241
doi: 10.1016/j.jallcom.2016.12.184
6 Zhang X, Wang Z H, Zhou Z H, et al. Corrosion behavior of Al-3.0% Mg alloy in NaCl solution under magnetic field [J]. Rare Met., 2017, 36: 627
doi: 10.1007/s12598-016-0785-5
7 Zhang X, Wang Z H, Zhou Z H, et al. Impact of magnetic field on corrosion performance of Al-Mg alloy with different electrode potential phases [J]. Intermetallics, 2021, 129: 107037
doi: 10.1016/j.intermet.2020.107037
8 Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution [J]. J. Mater. Sci. Technol., 2010, 26: 355
9 Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions [J]. Electrochim. Acta, 2009, 54: 2229
doi: 10.1016/j.electacta.2008.10.055
10 Lu Z P, Yang W. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions [J]. Corros. Sci., 2008, 50: 510
doi: 10.1016/j.corsci.2007.07.009
11 Yang G H, Zhou Z H, Zhang X, et al. Influence of magnetic field on corrosion behavior of Al-Mg alloys with different Mg content [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 633
11 杨光恒, 周泽华, 张 欣 等. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 633
doi: 10.11902/1005.4537.2020.236
12 Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
doi: 10.1149/1.2086807
13 Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
doi: 10.1016/S1388-2481(01)00136-9
14 Yasakau K A, Zheludkevich M L, Lamaka S V, et al. Role of intermetallic phases in localized corrosion of AA5083 [J]. Electrochim. Acta, 2007, 52: 7651
doi: 10.1016/j.electacta.2006.12.072
15 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
15 刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
16 Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
16 刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
17 Campestrini P, van Westing E P M, de Wit J H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part II: EIS investigation [J]. Electrochim. Acta, 2001, 46: 2631
doi: 10.1016/S0013-4686(01)00476-5
18 Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys [J]. J. Alloy. Compd., 2014, 612: 42
doi: 10.1016/j.jallcom.2014.05.128
19 Luo S Z, Elouarzaki K, Xu Z J. Electrochemistry in magnetic fields [J]. Angew. Chem. Int. Ed., 2022, 61: e202203564
doi: 10.1002/anie.v61.27
20 Gatard V, Deseure J, Chatenet M. Use of magnetic fields in electrochemistry: a selected review [J]. Curr. Opin. Electrochem., 2020, 23: 96
21 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
doi: 10.1016/j.elecom.2014.02.006
22 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Kelvin force. A mini-review [J]. Electrochem. Commun., 2014, 42: 42
doi: 10.1016/j.elecom.2014.02.005
23 Vincent I, Choi B, Nakoji M, et al. Pulsed current water splitting electrochemical cycle for hydrogen production [J]. Int. J. Hydrogen Energy, 2018, 43: 10240
24 Monzon L M A, Nair V, Reilly B, et al. Magnetically-induced flow during electropolishing [J]. J. Electrochem. Soc., 2018, 165: E679
doi: 10.1149/2.0581813jes
25 Liu H B, Pan L M, Qin Q J, et al. Experimental and numerical investigation of gas–liquid flow in water electrolysis under magnetic field [J]. J. Electroanal. Chem., 2019, 832: 293
26 Weier T, Hüller J, Gerbeth G, et al. Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis [J]. Chem. Eng. Sci., 2005, 60: 293
doi: 10.1016/j.ces.2004.07.060
27 Katz E, Lioubashevski O, Willner I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems:  enhanced performance of biofuel cells [J]. J. Am. Chem. Soc., 2005, 127: 3979
doi: 10.1021/ja044157t
28 Udagawa C, Ueno M, Hisaki T, et al. Magnetic field effects on electroless deposition of lead Metal—Lorentz Force Effects— [J]. Bull. Chem. Soc. Jpn., 2018, 91: 165
doi: 10.1246/bcsj.20170238
29 Weston M C, Fritsch I. Manipulating fluid flow on a chip through controlled-current redox magnetohydrodynamics [J]. Sens. Actuators B: Chem., 2012, 173: 935
doi: 10.1016/j.snb.2012.07.006
30 Weston M C, Gerner M D, Fritsch I. Magnetic fields for fluid motion [J]. Anal. Chem., 2010, 82: 3411
doi: 10.1021/ac901783n pmid: 20380431
31 Zhang X, Mei W, Huang L P, et al. Galvanic corrosion behavior of 5083 alloy/H62 brass couple under magnetic field [J]. J. Mater. Res. Technol., 2023, 22: 192
doi: 10.1016/j.jmrt.2022.11.140
32 Despić A R, Dražić D M, Purenović M M, et al. Electrochemical properties of aluminium alloys containing indium, gallium and thallium [J]. J. Appl. Electrochem., 1976, 6: 527
33 Ford F P, Burstein G T, Hoar T P. Bare surface reaction rates and their relation to environment controlled cracking of aluminum alloys: I. Bare surface reaction rates on aluminum-7 weight percent magnesium in aqueous solutions [J]. J. Electrochem. Soc., 1980, 127: 1325
doi: 10.1149/1.2129893
34 Lu Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
doi: 10.1016/j.corsci.2005.11.014
35 Rhen F M F, Coey J M D. Magnetic field effect on autocatalysis: Ag and Cu in concentrated nitric acid [J]. J. Phys. Chem. B, 2006, 110: 6274
doi: 10.1021/jp057585+
36 O'Brien R N, Santhanam K S V. Electrochemical hydrodynamics in magnetic fields with laser interferometry: influence of paramagnetic ions [J]. J. Appl. Electrochem., 1990, 20: 427
37 Waskaas M, Kharkats Y I. Effect of magnetic fields on convection in solutions containing paramagnetic ions [J]. J. Electroanal. Chem., 2001, 502: 51
doi: 10.1016/S0022-0728(00)00528-3
[1] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[2] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[3] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[4] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[5] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[6] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[7] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[8] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[9] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[10] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[11] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[12] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[13] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[14] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[15] 包晔峰, 武竹雨, 陈哲, 郭林坡, 王子睿, 曹冲, 宋亓宁. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.