|
|
高铁散热器用3003铝合金焊接隔板的腐蚀机理研究 |
巫海亮1, 陈宇强1( ), 黄亮2, 顾宏宇2, 孙宏博1, 刘佳俊1, 王乃光3, 宋宇峰1 |
1.湖南科技大学 高功效轻合金构件成形技术及耐损伤性能评价湖南省工程研究中心 湘潭 411201 2.株洲时代金属制造有限公司 株洲 412200 3.广东工业大学材料与能源学院 广州 510006 |
|
Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train |
WU Hailiang1, CHEN Yuqiang1( ), HUANG Liang2, GU Hongyu2, SUN Hongbo1, LIU Jiajun1, WANG Naiguang3, SONG Yufeng1 |
1. Hunan Engineering Research Center of Forming Technology and Damage Resistance Evaluation for High Efficiency Light Alloy Components, Hunan University of Science and Technology, Xiangtan 411201, China 2. Zhuzhou Times Metal Manufacturing Co., Ltd., Zhuzhou 412200, China 3. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China |
引用本文:
巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
Hailiang WU,
Yuqiang CHEN,
Liang HUANG,
Hongyu GU,
Hongbo SUN,
Jiajun LIU,
Naiguang WANG,
Yufeng SONG.
Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1081-1088.
[1] |
Yang H J, Gao Y M, Qin W C, et al. Microstructure and corrosion behavior of electroless Ni-P on sprayed Al-Ce coating of 3003 aluminum alloy [J]. Surf. Coat. Technol., 2015, 281: 176
|
[2] |
Li X Q, Xiao Q, Li L, et al. Microstructure and mechanical property of 3003 aluminum alloy joint brazed with Al-Si-Cu-Zn filler metal [J]. J. Mater. Eng., 2016, 44(9): 32
doi: 10.11868/j.issn.1001-4381.2016.09.005
|
[2] |
李小强, 肖 晴, 李 力 等. Al-Si-Cu-Zn钎料钎焊3003铝合金的接头组织及力学性能 [J]. 材料工程, 2016, 44(9): 32
doi: 10.11868/j.issn.1001-4381.2016.09.005
|
[3] |
Pandya A, Saha D, Singh J K, et al. Effect of environmental pollution on corrosion characteristics of 3003 Aluminium alloy exposed in different parts of India [J]. Trans. Indian Inst. Met., 2017, 70: 1607
|
[4] |
Chen X, Tian W M, Li S M, et al. Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution [J]. Chin. J. Aeronaut., 2016, 29: 1142
|
[5] |
Yang H J, Gao Y M, Qin W C. Corrosion inhibition of 3003 aluminum alloy by cerium chloride-sodium nitrite blend in flue gas condensate [J]. Mater. Corros., 2017, 68: 1246
|
[6] |
Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
|
[6] |
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
|
[7] |
Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
|
[7] |
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
|
[8] |
Wang S N, Gu Y H, Geng Y L, et al. Investigating local corrosion behavior and mechanism of MAO coated 7075 aluminum alloy [J]. J. Alloy. Compd., 2020, 826: 153976
|
[9] |
Chen C Y, Yang J, Li J Q, et al. Effect of chloride ion concentration on corrosion behavior of 3003 aluminum alloy in simulated marine atmospheric environment [J]. Surf. Technol., 2015, 44(3): 116
|
[9] |
陈朝轶, 杨 京, 李军旗 等. 模拟海洋大气环境下Cl-质量分数对3003铝合金腐蚀行为的影响 [J]. 表面技术, 2015, 44(3): 116
|
[10] |
Yang H J, Gao Y M, Qin W C, et al. Investigation of corrosion behavior of 3003 aluminum alloy in flue gas condensate [J]. Mater. Corros., 2017, 68: 664
|
[11] |
Iwao S, Yoshino M, Edo M, et al. Corrosion behavior of alloy A3003 after brazing in HCl, CH3COOH, and mixed solutions [J]. Corrosion, 2015, 71: 598
|
[12] |
Yang X K, Zhang L W, Zhang S Y, et al. Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments [J]. Mater. Corros., 2017, 68: 529
|
[13] |
Yin M Y, Ma L Q, Wang J, et al. Effect of homogenizing treatment on the corrosion resistance of 3003 aluminum alloy ingot [J]. Spec. Cast. Nonferrous Alloys, 2012, 32: 775
|
[13] |
尹明勇, 马立群, 王 娟 等. 均匀化处理对3003铝合金铸锭耐蚀性的影响 [J]. 特种铸造及有色合金, 2012, 32: 775
|
[14] |
Li Z, Zhang Z, Chen X G. Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al-Mn-Mg 3xxx alloys with varying Mg and Si contents [J]. Mater. Sci. Eng., 2017, 708A: 383
|
[15] |
Wang N G, Wang R C, Feng Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery [J]. Corros. Sci., 2016, 112: 13
|
[16] |
Xie Y M, Meng X C, Wang F F, et al. Insight on corrosion behavior of friction stir welded AA2219/AA2195 joints in astronautical engineering [J]. Corros. Sci., 2021, 192: 109800
|
[17] |
Wang N G, Huang Y X, Liu J J, et al. AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery [J]. Electrochim. Acta, 2021, 378: 138135
|
[18] |
Cao Y X, Zou C J, Wang C J, et al. Effect of TiO2 nanoparticles and SDBS on corrosion behavior of 3003 aluminum alloy in aqueous ethylene glycol containing chloride ions at high temperature [J]. J. Alloy. Compd., 2021, 873: 159820
|
[19] |
Zhang Y G, Chen Y L, Bian G X, et al. Electrochemical behavior and corrosion mechanism of anodized 7B04 aluminum alloy in acid NaCl environments [J]. J. Alloy. Compd., 2021, 886: 161231
|
[20] |
Wang Z B, Hu H X, Zheng Y G. Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions [J]. Corros. Sci., 2018, 130: 203
|
[21] |
Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 Al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
|
[21] |
战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383
doi: 10.11902/1005.4537.2020.082
|
[22] |
Romanoff M. Underground Corrosion [M]. Washington: U.S. Government Printing Office, 1957
|
[23] |
Gu Y F, Ma M M, Li J, et al. Effect of annealing on corrosion property of aluminum/steel dissimilar metal fusion-brazed joint [J]. Trans. China Weld. Inst., 2017, 38(12): 46
|
[23] |
顾玉芬, 马敏敏, 李 杰 等. 焊后退火对铝/钢异种金属熔钎焊接头腐蚀性能的影响 [J]. 焊接学报, 2017, 38(12): 46
|
[24] |
Zhang B. Research on the adaptability of weathering prevention technology in earthen sites under different climatic conditions [D]. Lanzhou: Lanzhou University, 2021
|
[24] |
张 博. 不同气候环境下土遗址防风化技术适应性研究 [D]. 兰州: 兰州大学, 2021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|