Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 1081-1088     CSTR: 32134.14.1005.4537.2023.268      DOI: 10.11902/1005.4537.2023.268
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
高铁散热器用3003铝合金焊接隔板的腐蚀机理研究
巫海亮1, 陈宇强1(), 黄亮2, 顾宏宇2, 孙宏博1, 刘佳俊1, 王乃光3, 宋宇峰1
1.湖南科技大学 高功效轻合金构件成形技术及耐损伤性能评价湖南省工程研究中心 湘潭 411201
2.株洲时代金属制造有限公司 株洲 412200
3.广东工业大学材料与能源学院 广州 510006
Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train
WU Hailiang1, CHEN Yuqiang1(), HUANG Liang2, GU Hongyu2, SUN Hongbo1, LIU Jiajun1, WANG Naiguang3, SONG Yufeng1
1. Hunan Engineering Research Center of Forming Technology and Damage Resistance Evaluation for High Efficiency Light Alloy Components, Hunan University of Science and Technology, Xiangtan 411201, China
2. Zhuzhou Times Metal Manufacturing Co., Ltd., Zhuzhou 412200, China
3. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
引用本文:

巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
Hailiang WU, Yuqiang CHEN, Liang HUANG, Hongyu GU, Hongbo SUN, Jiajun LIU, Naiguang WANG, Yufeng SONG. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1081-1088.

全文: PDF(10829 KB)   HTML
摘要: 

采用X射线荧光光谱(XRF)、扫描电镜(SEM)、电化学阻抗谱(EIS)和极化曲线分析了实际环境中的沉积粉尘对高铁散热器用3003铝合金焊接隔板腐蚀行为的影响机理,并建立了铝合金焊接隔板的腐蚀深度预测模型。结果表明,在粉尘溶液环境中,铝合金焊接隔板在腐蚀初期以点蚀为主,随后演变为沿晶腐蚀。铝合金焊接隔板的主要腐蚀产物为Al(OH)3和AlCl3。铝合金焊接隔板经粉尘溶液全浸180 d后,腐蚀电位下降了24.5%,腐蚀电流密度提高了156.7 %。结合全浸实验和实际服役8 a的构件腐蚀深度测试结果,建立了高铁散热器用铝合金焊接隔板最大腐蚀深度预测模型。

关键词 3003铝合金耐蚀性腐蚀机理腐蚀模型腐蚀深度预测模型    
Abstract

The corrosion behavior of welded partitions of 3003 Al-alloy, used for radiators of high-speed train, in artificial solution of settling dust, which aims to simulate the synergistic ation of the settling dusts and rains on the partitions in the real service, was studied by means of immersion test, polarization curve measurement, X-ray fluorescence (XRF), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Meanwhile, the relevant prediction model for the corrosion depth of welded partitions was established. The results show that, the pitting corrosion is dominant at the initial stage of corrosion, and then gradually evolves into intergranular corrosion. The main corrosion products of welded partitions are Al(OH)3 and AlCl3. In comparison with those of the as received ones, the corrosion potential of welded partitions after immersion for 180 d decreases by 24.5% and the corrosion current density increases by 156.7%. A prediction model for the maximum corrosion depth of welded partitions was established based on data of the immersion test results and the measured corrosion depth of the very welded partitions after 8 a of live vehicle service.

Key words3003 Al-alloy    corrosion-resistance    corrosion behavior    corrosion model    corrosion depth prediction model
收稿日期: 2023-08-25      32134.14.1005.4537.2023.268
ZTFLH:  TG174  
基金资助:国家自然科学基金(52075166);国家自然科学基金(U21A20130);湖南创新型省份建设专项(2021GK4048);湖南创新型省份建设专项(2023RC1068)
通讯作者: 陈宇强,E-mail:yqchen1984@163.com,研究方向为高性能金属材料
Corresponding author: CHEN Yuqiang, E-mail: yqchen1984@163.com
作者简介: 巫海亮,男,1996年生,硕士生
图1  3003铝合金焊接隔板在粉尘溶液中全浸不同时间后的SEM形貌及EDS分析
图2  3003铝合金焊接隔板剖面在粉尘溶液中全浸不同时间后的剖面金相形貌
图3  3003铝合金焊接隔板在粉尘溶液中全浸7 d后的XPS谱
图4  3003铝合金焊接隔板在粉尘溶液中全浸不同时间后的极化曲线

Exposure time

d

Ecorrvs. SCE

V

Icorr

μA·cm-2

bc

mV·dec-1

0-0.6163.711-595
3-0.6524.709-526
7-0.6867.079-679
15-0.7179.162-324
30-0.7428.550-723
180-0.7669.527-440
表1  3003铝合金焊接隔板经粉尘溶液全浸不同时间后的极化曲线拟合参数
图5  3003铝合金在粉尘溶液全浸不同时间后的Nyquist图及相应等效电路图

Exposure time

d

Rs

Ω·cm2

Yf

Ω-1·cm-2·s n

nf

Rf

Ω·cm2

Cdl

F

Rt

Ω·cm2

RL

Ω·cm2

L

H·cm2

313.493.82 × 10-60.9284381.63 × 10-621552132876
711.353.47 × 10-60.9152388.98 × 10-612129641238
1512.778.59 × 10-60.9832781.85 × 10-5891325524
3017.821.21 × 10-60.9230548.26 × 10-657917289
1808.6938.50 × 10-50.9329314.10 × 10-636846127
表2  在粉尘溶液中全浸不同时间后3003铝合金焊接隔板的EIS拟合的参数
图6  服役8 a后高铁散热器铝合金焊接隔板形貌及EDS结果
图7  3003铝合金焊接隔板的腐蚀模型
图8  3003铝合金焊接隔板最大腐蚀深度预测曲线
[1] Yang H J, Gao Y M, Qin W C, et al. Microstructure and corrosion behavior of electroless Ni-P on sprayed Al-Ce coating of 3003 aluminum alloy [J]. Surf. Coat. Technol., 2015, 281: 176
[2] Li X Q, Xiao Q, Li L, et al. Microstructure and mechanical property of 3003 aluminum alloy joint brazed with Al-Si-Cu-Zn filler metal [J]. J. Mater. Eng., 2016, 44(9): 32
doi: 10.11868/j.issn.1001-4381.2016.09.005
[2] 李小强, 肖 晴, 李 力 等. Al-Si-Cu-Zn钎料钎焊3003铝合金的接头组织及力学性能 [J]. 材料工程, 2016, 44(9): 32
doi: 10.11868/j.issn.1001-4381.2016.09.005
[3] Pandya A, Saha D, Singh J K, et al. Effect of environmental pollution on corrosion characteristics of 3003 Aluminium alloy exposed in different parts of India [J]. Trans. Indian Inst. Met., 2017, 70: 1607
[4] Chen X, Tian W M, Li S M, et al. Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution [J]. Chin. J. Aeronaut., 2016, 29: 1142
[5] Yang H J, Gao Y M, Qin W C. Corrosion inhibition of 3003 aluminum alloy by cerium chloride-sodium nitrite blend in flue gas condensate [J]. Mater. Corros., 2017, 68: 1246
[6] Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
[6] 刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
[7] Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
[7] 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
[8] Wang S N, Gu Y H, Geng Y L, et al. Investigating local corrosion behavior and mechanism of MAO coated 7075 aluminum alloy [J]. J. Alloy. Compd., 2020, 826: 153976
[9] Chen C Y, Yang J, Li J Q, et al. Effect of chloride ion concentration on corrosion behavior of 3003 aluminum alloy in simulated marine atmospheric environment [J]. Surf. Technol., 2015, 44(3): 116
[9] 陈朝轶, 杨 京, 李军旗 等. 模拟海洋大气环境下Cl-质量分数对3003铝合金腐蚀行为的影响 [J]. 表面技术, 2015, 44(3): 116
[10] Yang H J, Gao Y M, Qin W C, et al. Investigation of corrosion behavior of 3003 aluminum alloy in flue gas condensate [J]. Mater. Corros., 2017, 68: 664
[11] Iwao S, Yoshino M, Edo M, et al. Corrosion behavior of alloy A3003 after brazing in HCl, CH3COOH, and mixed solutions [J]. Corrosion, 2015, 71: 598
[12] Yang X K, Zhang L W, Zhang S Y, et al. Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments [J]. Mater. Corros., 2017, 68: 529
[13] Yin M Y, Ma L Q, Wang J, et al. Effect of homogenizing treatment on the corrosion resistance of 3003 aluminum alloy ingot [J]. Spec. Cast. Nonferrous Alloys, 2012, 32: 775
[13] 尹明勇, 马立群, 王 娟 等. 均匀化处理对3003铝合金铸锭耐蚀性的影响 [J]. 特种铸造及有色合金, 2012, 32: 775
[14] Li Z, Zhang Z, Chen X G. Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al-Mn-Mg 3xxx alloys with varying Mg and Si contents [J]. Mater. Sci. Eng., 2017, 708A: 383
[15] Wang N G, Wang R C, Feng Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery [J]. Corros. Sci., 2016, 112: 13
[16] Xie Y M, Meng X C, Wang F F, et al. Insight on corrosion behavior of friction stir welded AA2219/AA2195 joints in astronautical engineering [J]. Corros. Sci., 2021, 192: 109800
[17] Wang N G, Huang Y X, Liu J J, et al. AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery [J]. Electrochim. Acta, 2021, 378: 138135
[18] Cao Y X, Zou C J, Wang C J, et al. Effect of TiO2 nanoparticles and SDBS on corrosion behavior of 3003 aluminum alloy in aqueous ethylene glycol containing chloride ions at high temperature [J]. J. Alloy. Compd., 2021, 873: 159820
[19] Zhang Y G, Chen Y L, Bian G X, et al. Electrochemical behavior and corrosion mechanism of anodized 7B04 aluminum alloy in acid NaCl environments [J]. J. Alloy. Compd., 2021, 886: 161231
[20] Wang Z B, Hu H X, Zheng Y G. Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions [J]. Corros. Sci., 2018, 130: 203
[21] Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 Al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
[21] 战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383
doi: 10.11902/1005.4537.2020.082
[22] Romanoff M. Underground Corrosion [M]. Washington: U.S. Government Printing Office, 1957
[23] Gu Y F, Ma M M, Li J, et al. Effect of annealing on corrosion property of aluminum/steel dissimilar metal fusion-brazed joint [J]. Trans. China Weld. Inst., 2017, 38(12): 46
[23] 顾玉芬, 马敏敏, 李 杰 等. 焊后退火对铝/钢异种金属熔钎焊接头腐蚀性能的影响 [J]. 焊接学报, 2017, 38(12): 46
[24] Zhang B. Research on the adaptability of weathering prevention technology in earthen sites under different climatic conditions [D]. Lanzhou: Lanzhou University, 2021
[24] 张 博. 不同气候环境下土遗址防风化技术适应性研究 [D]. 兰州: 兰州大学, 2021
[1] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[2] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[3] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[4] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[5] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[6] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[7] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[8] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[9] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[10] 赵璐, 李谦, 赵天亮. 青铜器腐蚀行为与封护技术[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[11] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[12] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[13] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[14] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[15] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.