Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 1073-1080     CSTR: 32134.14.1005.4537.2023.279      DOI: 10.11902/1005.4537.2023.279
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
商用MB1MB8镁合金在NaCl溶液中的电化学性能
王博1, 安士忠1,2,3,4(), 郭俊卿1(), 纪运广1, 李志强1
1.河南科技大学材料科学与工程学院 洛阳 471023
2.龙门实验室 洛阳 471000
3.省部共建有色金属新材料与先进加工技术协同创新中心 洛阳 471023
4.河南省有色金属材料科学与加工技术重点实验室 洛阳 471023
Electrochemical Performance of Commercial MB1 and MB8 Mg-alloys in NaCl Solution
WANG Bo1, AN Shizhong1,2,3,4(), GUO Junqing1(), JI Yunguang1, LI Zhiqiang1
1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. Longmen Laboratory, Luoyang 471000, China
3. Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China
4. Henan Key Laboratory of Nonferrous Materials Science and Processing Technology, Luoyang 471023, China
引用本文:

王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
Bo WANG, Shizhong AN, Junqing GUO, Yunguang JI, Zhiqiang LI. Electrochemical Performance of Commercial MB1 and MB8 Mg-alloys in NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1073-1080.

全文: PDF(10190 KB)   HTML
摘要: 

研究了挤压态MB1和铸态MB8镁合金在不同浓度NaCl溶液中的腐蚀和电化学性能。结果表明,随着NaCl电解液浓度升高,镁合金的阳极利用效率不断升高,放电电压更高。放电电流密度为10 mA·cm-2时,铸态MB8和挤压态MB1镁合金的阳极利用效率在4 mol/L的NaCl电解液中最高,分别为41.8%和38.8%。得益于更细的晶粒,挤压态MB1合金表现出更高的活性,放电电压比铸态MB8合金略高一些,且放电电压更稳定。铸态MB8合金晶粒相对较粗大,但自腐蚀速率更低、阳极利用效率更高。

关键词 镁空气电池自腐蚀速率电化学性能放电性能加工工艺    
Abstract

Mg-alloys, as light-weight high-performance materials, have extensive potential applications in various fields. However, in practical use for metal-air batteries, their electrochemical performance is significantly influenced by the composition and condition of the anode material. Therefore, to develop more efficient Mg-air batteries, it is crucial to study the electrochemical performance of commercial Mg-alloys in the presence of different electrolytes. This study focuses on the corrosion and electrochemical performance of extruded MB1 and cast MB8 Mg-alloys in NaCl solutions of varying concentrations in terms of the anode utilization efficiency, discharge voltage, and grain structures. The results indicate that the electrochemical performance of Mg-alloys was improved significantly as the NaCl electrolyte concentration increases. Specifically, with increasing concentration, the anode utilization efficiency was gradually improved, accompanied by higher discharge voltages. When the discharge current density is 10 mA·cm-2 in 4 mol/L NaCl electrolyte, the peak anode utilization efficiency for cast MB8 and extruded MB1 Mg-alloys reach 41.8% and 38.8%, respectively. The extruded MB1 alloy, due to its finer grain structure, exhibits higher activity, slightly higher and more stable discharge voltage in comparison with the cast MB8 alloy. Besides, the cast MB8 alloy has relatively coarser grains, but it has a lower self-corrosion rate and higher anode utilization efficiency. In sum, the extruded MB1 alloy shows higher activity, while the cast MB8 alloy exhibits superior corrosion resistance. These findings offer useful guidance for the future development of Mg-air batteries and are expected to further advance the application of Mg-alloys in the field of energy storage.

Key wordsmagnesium-air battery    self-corrosion rate    electrochemical property    discharge performance    processing technology
收稿日期: 2023-09-07      32134.14.1005.4537.2023.279
ZTFLH:  TM911  
基金资助:河南省重点研发与推广专项(232102231019)
通讯作者: 安士忠,E-mail:anshizhong@sina.com,研究方向为磁、电及电化学功能材料;
郭俊卿,E-mail: hkdgjq@163.com,研究方向为金属精密塑性成形理论
Corresponding author: AN Shizhong, E-mail: anshizhong@sina.com;
作者简介: 王 博,男,1998年生,硕士生
SampleMnCeZnAlCuNiSiFeBeOtherMg
MB11.30-2.50-0.300.200.050.0070.100.050.010.20Bal.
MB81.50-2.500.15-0.35-0.300.050.010.150.050.020.20Bal.
表1  商用挤压态MB1和铸态MB8镁合金的成分 (mass fraction / %)
图1  挤压态MB1和铸态MB8镁合金的金相组织
图2  挤压态MB1和铸态MB8镁合金在不同浓度NaCl溶液中的Tafel曲线
Sample

NaCl concentration

mol·L-1

Ecorr

V

Icorr

A·cm-2

Rp

Ω·cm2

MB1

0.6-1.4824.37 × 10-4325
1-1.4875.12 × 10-4270
2-1.5605.70 × 10-4227
4-1.6786.69 × 10-4167

MB8

0.6-1.2813.07 × 10-4366
1-1.4033.53 × 10-4312
2-1.5024.34 × 10-4276
4-1.5975.11 × 10-4213
表2  挤压态MB1和铸态MB8镁合金在不同浓度NaCl溶液中的Tafel曲线拟合数据
图3  挤压态MB1和铸态MB8镁合金在不同浓度NaCl溶液中的Nyquist图及等效电路
Sample

NaCl concentration

mol·L-1

Rs

Ω·cm2

CPEf

F·cm-2

nf

Rf

Ω·cm2

CPEdl

F·cm-2

nct

Rct

Ω·cm2

χ2

10-3

MB10.614.336.4 × 10-60.917.727.0 × 10-60.95450.900.13
13.636.5 × 10-61.0019.581.0 × 10-60.81375.101.05
22.706.8 × 10-61.0021.071.3 × 10-60.79253.002.76
41.567.4 × 10-61.0028.041.4 × 10-50.78182.102.62
MB80.62.242.5 × 10-61.007.411.6 × 10-50.82982.402.07
11.403.3 × 10-50.8414.957.3 × 10-61.00671.506.36
21.335.2 × 10-40.807.713.8 × 10-50.80513.400.80
41.174.6 × 10-60.807.544.3 × 10-50.80449.900.47
表3  挤压态MB1和铸态MB8镁合金在NaCl溶液中等效电路图的拟合数据
图4  挤压态MB1和铸态MB8镁合金在不同浓度电解液中的自腐蚀速率和析氢速率
图5  不同浓度NaCl电解液镁空气电池在10 mA·cm-2电流密度下的放电曲线
图6  挤压态MB1和铸态MB8镁合金在不同浓度的NaCl溶液中的阳极利用率和容量密度
图7  镁合金在10 mA·cm-2放电电流密度下不同浓度NaCl电解液中放电5 h后的腐蚀形貌
图8  镁合金在10 mA·cm-2放电电流密度下不同浓度NaCl电解液中放电5 h后去除腐蚀产物后的腐蚀形貌
[1] Chen X R, Liao Q Y, Le Q C, et al. The influence of samarium (Sm) on the discharge and electrochemical behaviors of the magnesium alloy AZ80 as an anode for the Mg-air battery [J]. Electrochim. Acta, 2020, 348: 136315
[2] Zou Q, Le Q C, Chen X R, et al. The influence of Ga alloying on Mg-Al-Zn alloys as anode material for Mg-air primary batteries [J]. Electrochim. Acta, 2022, 401: 139372
[3] Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: a review of alloys, electrolytes and design [J]. J. Power Sources, 2021, 498: 229762
[4] Li C S, Sun Y, Gebert F, et al. Current progress on rechargeable magnesium-air battery [J]. Adv. Energy Mater., 2017, 7: 1700869
[5] Zhu L L, Liu H, Fang H J, et al. Effect of electrolyte concentration on electrochemical properties of AT61 and AP65 magnesium alloy anodes [J]. Heat Treat. Met., 2020, 45(1): 101
[5] 朱伶俐, 刘 慧, 房洪杰 等. 电解液浓度对AT61、AP65镁合金阳极电化学性能的影响 [J]. 金属热处理, 2020, 45(1): 101
doi: 10.13251/j.issn.0254-6051.2020.01.020
[6] Basri S, Hazri N S, Selladurai S R, et al. Analysis of Mg(OH)2 deposition for magnesium air fuel cell (MAFC) by saline water [J]. Sains Malays., 2020, 49: 3105
[7] Cheng W L, Chen Y H, Gu X J, et al. Revealing the influence of crystallographic orientation on the electrochemical and discharge behaviors of extruded diluted Mg-Sn-Zn-Ca alloy as anode for Mg-air battery [J]. J. Power Sources, 2022, 520: 230802
[8] Chen X R, Zou Q, Le Q C, et al. Influence of heat treatment on the discharge performance of Mg-Al and Mg-Zn alloys as anodes for the Mg-air battery [J]. Chem. Eng. J., 2022, 433: 133797
[9] Chen X R, Wang H N, Zou Q, et al. The influence of heat treatment on discharge and electrochemical properties of Mg-Gd-Zn magnesium anode with long period stacking ordered structure for Mg-air battery [J]. Electrochim. Acta, 2021, 367: 137518
[10] Wu J L, Wang R C, Feng Y, et al. Effect of hot rolling on the microstructure and discharge properties of Mg-1.6wt%Hg-2 wt%Ga alloy anodes [J]. J. Alloy. Compd., 2018, 765: 736
[11] Wang N G, Li W P, Huang Y X, et al. Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries [J]. J. Power Sources, 2019, 436: 226855
[12] Deng M, Höche D, Lamaka S V, et al. Mg-Ca binary alloys as anodes for primary Mg-air batteries [J]. J. Power Sources, 2018, 396: 109
[13] Liu S Q, Ma H, Huang Z H, et al. Microstructures and mechanical properties of Mg-8Gd-4Y-1Zn-0.5Al alloy rolled at room temperature [J]. Chin. J. Nonferrous Met., 2022, 32: 1605
[13] 刘思琦, 马晗, 黄正华 等. Mg-8Gd-4Y-1Zn-0.5Al合金的室温轧制组织与力学性能 [J]. 中国有色金属学报, 2022, 32: 1605
[14] Xiong H Q, Yu K, Yin X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery [J]. J. Alloys Compd., 2017, 708: 652
[15] Yuan S Q, Lu H M, Sun Z G, et al. Electrochemical performance of Mg-3Al modified with Ga, In and Sn as anodes for Mg-air battery [J]. J. Electrochem. Soc., 2016, 163: A1181
[16] Liu X, Liu S Z, Xue J L. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries [J]. J. Power Sources, 2018, 396: 667
[17] Wang N G, Mu Y C, Li Q, et al. Discharge and corrosion behaviour of AP65 magnesium anode plates with different rolling reductions [J]. RSC Adv., 2017, 7: 53226
[18] Wang N G, Wang R C, Peng C Q, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery [J]. Electrochim. Acta, 2014, 149: 193
[19] Yuasa M, Huang X S, Suzuki K, et al. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries [J]. J. Power Sources, 2015, 297: 449
[20] Li Q, Xiong W, Yu M H, et al. Effect of Ce content on performance of AZ31 magnesium alloy anode in air battery [J]. J. Alloy. Compd., 2022, 891: 161914
[21] Wu L B. The study on the behavior of Ce-rich RE and Ce in α Mg-Li-based alloy [D]. Harbin: Harbin Engineering University, 2011
[21] 吴利斌. 富铈稀土和铈对α-镁锂合金性能的影响研究 [D]. 哈尔滨: 哈尔滨工程大学, 2011
[22] Wang H Y. Microstructure and properties of Mg-Al-Zn wrought magnesium alloys after asynchronous rolling and heat treatment [D]. Shenyang: Shenyang Ligong University, 2018
[22] 王宏岩. Mg-Al-Zn系变形镁合金异步轧制及热处理后的组织性能研究 [D]. 沈阳: 沈阳理工大学, 2018
[23] Yin D S, Zhang E L, Zeng S Y. Effect of Zn on mechanical properties and corrosion properties of as-cast Mg-Mn alloy [J]. Chin. J. Nonferrous Met. Soc., 2008, 18: 388
[23] 尹冬松, 张二林, 曾松岩. Zn对铸态Mg-Mn合金力学性能和腐蚀性能的影响 [J]. 中国有色金属学报, 2008, 18: 388
[24] Lai L, Zhang K, Li X G, et al. Microstructure and mechanical properties of Mg-Mn-Zn magnesium alloy with different Zn contents [J]. Chin. J. Rare Met., 2016, 40: 552
[24] 赖林, 张奎, 李兴刚 等. Zn含量对Mg-Mn-Zn 合金显微组织和力学性能的影响 [J]. 稀有金属, 2016, 40: 552
[25] Yang H B, Wu L, Jiang B, et al. Effects of grain size on the corrosion and discharge behaviors of Mg-Y binary alloys for Mg-air batteries [J]. J. Electrochem. Soc., 2020, 167: 130515.
[26] Zhong L, Peng J, Sun Y, et al. Microstructure and thermal conductivity of as-cast and as-extruded binary Mg-Mn alloys [J]. Mater. Sci. Technol., 2017, 33: 92
[27] Wang Y W, Guo F, Hu W X, et al. Effects and difference of Ce and Y on corrosion behaviors of Mg-Mn-RE magnesium alloys [J] Surf. Technol., 2023, 52(9): 232
[27] 王熠玮, 郭 锋, 胡文鑫 等. 稀土元素Ce, Y在Mg-Mn-RE镁合金腐蚀中的作用及其差异 [J]. 表面技术, 2023, 52(9): 232
[28] Zhang Y W X, Han L, Ren L B, et al. Effect of yttrium and calcium additions on electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air battery [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 2510
[29] Qin C H, Ma J L, Zhang Y, et al. Effect of Sb on anode properties of Mg-air batteries [J]. J. Henan Univ. Sci. Technol. (Nat. Sci.), 2022, 43(1): 13
[29] 秦聪慧, 马景灵, 张毅 等. 锑对镁空气电池阳极性能的影响 [J]. 河南科技大学学报(自然科学版), 2022, 43(1): 13
[30] Li Z J, Gu X N, Lou S Q, et al. The development of binary Mg–Ca alloys for use as biodegradable materials within bone [J]. Biomaterials, 2008, 29: 1329
[1] 阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[2] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[3] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[4] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[5] 曹彩红 梁成浩 黄乃宝. 镀铌不锈钢双极板的电化学性能[J]. 中国腐蚀与防护学报, 2013, 33(2): 123-128.
[6] 郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[7] 马力,李威力,曾红杰,闫永贵,侯保荣. 低驱动电位Al-Ga合金牺牲阳极及其活化机制[J]. 中国腐蚀与防护学报, 2010, 30(4): 329-332.
[8] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[9] 侯军才; 关绍康; 任晨星; 徐河; 房中学; 赵彦学 . 微量锶对镁锰牺牲阳极显微组织和电化学性能的影响[J]. 中国腐蚀与防护学报, 2006, 26(3): 166-170 .