Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 725-734     CSTR: 32134.14.1005.4537.2023.177      DOI: 10.11902/1005.4537.2023.177
  研究报告 本期目录 | 过刊浏览 |
CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究
张成龙1,2, 张斌1, 朱敏1(), 袁永锋1, 郭绍义1, 尹思敏1
1.浙江理工大学机械工程学院 杭州 310018
2.北京中科科仪股份有限公司 北京 100190
Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions
ZHANG Chenglong1,2, ZHANG Bin1, ZHU Min1(), YUAN Yongfeng1, GUO Shaoyi1, YIN Simin1
1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Kyky Technology Co., Ltd., Beijing 100190, China
引用本文:

张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
Chenglong ZHANG, Bin ZHANG, Min ZHU, Yongfeng YUAN, Shaoyi GUO, Simin YIN. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 725-734.

全文: PDF(6523 KB)   HTML
摘要: 

通过电化学测试、统计学分析和浸泡腐蚀实验系统地研究了等原子CoCrNi中熵合金(MEA)在不同浓度NH4Cl溶液中的腐蚀行为及机理。结果表明,随着NH4Cl浓度的增加,MEA的腐蚀电位(Ecorr)负移,维钝电流密度(Ip)增大,腐蚀速率增加,合金的耐腐蚀性能降低。当NH4Cl浓度为3%和8%时,阳极曲线出现了明显的活化-钝化过渡区,意味着合金钝性降低。此外,随着NH4Cl浓度的增加,MEA表面钝化膜的缺陷密度明显增加,钝化膜的厚度减薄,稳定性降低,这削弱了膜对合金的保护能力。NH4+和Cl-的共同作用促进了亚稳态点蚀的形核和发展,且在高浓度的NH4Cl溶液中,亚稳态点蚀难以再钝化,容易发展为稳态点蚀。MEA腐蚀形态主要为点蚀。

关键词 中熵合金腐蚀行为亚稳态点蚀钝化膜    
Abstract

The corrosion behavior and mechanism of medium entropy equiatomic CoCrNi alloy (MEA) in various NH4Cl solutions (i.e., with 1%, 3% and 8% NH4Cl) were systematically studied by electrochemical test, statistical analysis, and immersion corrosion test. The results show that with the increase of NH4Cl concentration, the corrosion potential (Ecorr) of the MEA shifts negatively, the passive current density (Ip) increases, and the corrosion rate rises, indicating that the corrosion resistance of the alloy decreases. When the concentrations of NH4Cl solution are 3% and 8%, the anodic polarization curve displays a clear active-passive transition zone, which means that the passivity of the MEA is reduced. In addition, as NH4Cl concentration increases, the defect density within the passivation film on the MEA increases significantly, the thickness of the film decreases, and its stability declines, which weakens the protection ability of the film. The combined effect between NH4+ and Cl- promotes the nucleation and development of metastable pitting corrosion, while in the high concentration of NH4Cl solution, the metastable pits are difficult to be re-passivated, and easy to develop into steady pits. In general, the main corrosion form of the MEA is pitting corrosion.

Key wordsMEA    corrosion behavior    metastable pitting corrosion    passive film
收稿日期: 2023-05-26      32134.14.1005.4537.2023.177
ZTFLH:  TG178  
基金资助:浙江省自然科学基金(LY18E010004);浙江理工大学基本科研业务费(22242293-Y)
通讯作者: 朱敏,E-mail:zmii2009@163.com,研究方向为金属材料的腐蚀与防护
Corresponding author: ZHU Min, E-mail:zmii2009@163.com
作者简介: 张成龙,男,1996年生,硕士生
图1  CoCrNi MEA的微观组织
图2  CoCrNi MEA在不同浓度NH4Cl溶液中的开路电位
图3  CoCrNi MEA在NH4Cl溶液中的动电位极化曲线
Mass fracton of NH4Cl / %Ecorr / VIp / 10-7 A⋅cm-2Epit / VEpp / VIpp / 10-6 A⋅cm-2
1-0.4106.1350.538--
3-0.5707.4570.527-0.4711.523
8-0.64308.870.468-0.4521.990
表 1  动电位极化曲线拟合结果
图4  CoCrNi MEA在NH4Cl溶液中的EIS曲线及等效拟合电路
Mass fraction of NH4Cl / %Rs / Ω·cm2Rf / 104 Ω·cm2Qf / 10-5 F·cm-2Qdl / 10-5 F·cm-2Rct / 106 Ω·cm2
124.881.2871.5691.7591.599
39.0350.92251.274.2951.372
84.0140.34941.634.5891.138
表2  电化学阻抗谱拟合结果
图5  CoCrNi MEA在NH4Cl溶液中的Rf和Rct值
图6  CoCrNi MEA在NH4Cl溶液中形成钝化膜的Mott-Schottky曲线,载流子浓度及钝化膜厚度
图7  CoCrNi MEA在NH4Cl溶液中的循环动电位极化曲线和滞回环面积
图8  CoCrNi MEA在NH4Cl溶液中的电流-时间瞬态曲线
图9  CoCrNi MEA的亚稳态点蚀电流峰
图10  CoCrNi MEA在NH4Cl溶液中的亚稳态点蚀的平均数量密度,电流瞬态峰值和寿命
图11  CoCrNi MEA在8%NH4Cl溶液中浸泡后的亚稳态点蚀形貌
图12  MEA在NH4Cl溶液中的平均腐蚀速率
图13  CoCrNi MEA在不同浓度NH4Cl溶液中浸泡5 d后的表面腐蚀形貌
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
2 Wang J Y, Yang H L, Huang H, et al. In-situ Mo nanoparticles strengthened CoCrNi medium entropy alloy [J]. J. Alloys. Compd., 2019, 798: 576
doi: 10.1016/j.jallcom.2019.05.208
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
4 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
5 Wang J Y, Yang H L, Ruan J M, et al. Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering [J]. J. Mater. Res., 2019, 34: 2126
doi: 10.1557/jmr.2019.96
6 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
7 Moravcik I, Hadraba H, Li L L, et al. Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility [J]. Scr. Mater., 2020, 178: 391
doi: 10.1016/j.scriptamat.2019.12.007
8 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
9 Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
doi: 10.1016/j.intermet.2013.10.024
10 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
11 Moravcik I, Cizek J, Kovacova Z, et al. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy [J]. Mater. Sci. Eng., 2017, 701A: 370
12 Lu K J, Chauhan A, Walter M, et al. Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi [J]. Scr. Mater., 2021, 194: 113667
doi: 10.1016/j.scriptamat.2020.113667
13 Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
doi: 10.1016/j.actamat.2017.02.036
14 Wang J Y, Li W H, Yang H L, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions [J]. Corros. Sci., 2020, 177: 108973
doi: 10.1016/j.corsci.2020.108973
15 Moravcik I, Peighambardoust N S, Motallebzadeh A, et al. Interstitial nitrogen enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution [J]. Mater. Charact., 2021, 172: 110869
doi: 10.1016/j.matchar.2020.110869
16 Zhang Z J, Yuan T C, Li R D. Corrosion performance of selective laser-melted equimolar CrCoNi medium-entropy alloy vs its cast counterpart in 3.5 wt% NaCl [J]. J. Alloys. Compd., 2021, 864: 158105
doi: 10.1016/j.jallcom.2020.158105
17 Toba K, Suzuki T, Kawano K, et al. Effect of relative humidity on ammonium chloride corrosion in refineries [J]. Corrosion, 2011, 67: 055005
18 Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method [J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
19 Ding J H, Zhang L, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures [J]. Appl. Surf. Sci., 2014, 289: 33
doi: 10.1016/j.apsusc.2013.10.080
20 Ernst P, Newman R C. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition [J]. Corros. Sci., 2002, 44: 943
doi: 10.1016/S0010-938X(01)00134-2
21 Du N, Tian W M, Zhao Q, et al. Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 807
doi: 10.3724/SP.J.1037.2012.00005
21 杜 楠, 田文明, 赵 晴 等. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理 [J]. 金属学报, 2012, 48: 807
22 Dastgerdi A A, Brenna A, Ormellese M, et al. Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel [J]. Corros. Sci., 2019, 159: 108160
doi: 10.1016/j.corsci.2019.108160
23 Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
doi: 10.1016/j.electacta.2014.02.107
24 Monrrabal G, Bautista A, Guzman S, et al. Influence of the cold working induced martensite on the electrochemical behavior of AISI 304 stainless steel surfaces [J]. J. Mater. Res. Technol., 2019, 8: 1335
doi: 10.1016/j.jmrt.2018.10.004
25 Chuaiphan W, Srijaroenpramong L. Evaluation of microstructure, mechanical properties and pitting corrosion in dissimilar of alternative low cost stainless steel grade 204Cu and 304 by GTA welding joint [J]. J. Mater. Res. Technol., 2020, 9: 5174
doi: 10.1016/j.jmrt.2020.03.034
26 Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
doi: 10.1016/j.corsci.2020.108520
27 Tian H Y, Fan L, Li Y Z, et al. Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment [J]. J. Electroanal. Chem., 2021, 894: 115368
doi: 10.1016/j.jelechem.2021.115368
28 Kritzer P, Boukis N, Dinjus E. Transpassive dissolution of alloy 625, chromium, nickel, and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen [J]. Corrosion, 2000, 56: 265
doi: 10.5006/1.3287652
29 Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
30 Pan H, Wang L W, Lin Y, et al. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution [J]. J. Mater. Sci. Technol., 2020, 54: 1
doi: 10.1016/j.jmst.2020.02.074
31 Zhu M, He F, Yuan Y F, et al. A comparative study on the corrosion behavior of CoCrNi medium-entropy alloy and 316L stainless steel in simulated marine environment [J]. Intermetallics, 2021, 139: 107370
doi: 10.1016/j.intermet.2021.107370
32 Zhu M, Zhang C L, Yuan Y F, et al. The corrosion behavior of CoCrNi medium entropy alloy with alternating current interference in carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2023, 32: 1
doi: 10.1007/s11665-022-07059-x
33 Araneda A A B, Kappes M A, Rodríguez M A, et al. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions [J]. Corros. Sci., 2022, 198: 110121
doi: 10.1016/j.corsci.2022.110121
34 Cui Z Y, Chen S S, Dou Y P, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
doi: 10.1016/j.corsci.2019.02.002
35 Chumlyakov Y I, Kireeva I V, Korotaev A D, et al. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels, [J]. Russ. Phys. J., 1996, 39: 189
doi: 10.1007/BF02067642
36 Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution [J]. Electrochim. Acta, 2013, 95: 1
doi: 10.1016/j.electacta.2013.02.024
37 Luo H, Su H Z, Dong C F, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution [J]. Appl. Surf. Sci., 2017, 400: 38
doi: 10.1016/j.apsusc.2016.12.180
38 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
doi: 10.1016/j.corsci.2018.02.031
39 Mao F X, Dong C F, Sharifi-Asl S, et al. Passivity breakdown on copper: influence of chloride ion [J]. Electrochim. Acta, 2014, 144: 391
doi: 10.1016/j.electacta.2014.07.160
40 Feng H, Li H B, Wu X L, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34: 1781
doi: 10.1016/j.jmst.2018.03.021
41 Macdonald D D. The history of the point defect model for the passive state: a brief review of film growth aspects [J]. Electrochim. Acta, 2011, 56: 1761
doi: 10.1016/j.electacta.2010.11.005
42 Ahn S J, Kwon H S, Macdonald D D. Role of chloride ion in passivity breakdown on iron and nickel [J]. J. Electrochem. Soc., 2005, 152: B482
doi: 10.1149/1.2048247
43 Zhao B Z, Zhu M, Yuan Y Y, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
43 赵宝珠, 朱 敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42: 425
doi: 10.11902/1005.4537.2021.161
44 Ningshen S, Mudali U K, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci., 2007, 49: 481
doi: 10.1016/j.corsci.2006.05.041
45 Bai G S, Lu S P, Li D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of super 304H austenitic stainless steel [J]. J. Electrochem. Soc., 2015, 162: C473
doi: 10.1149/2.0601509jes
46 Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
doi: 10.1016/j.corsci.2008.03.006
47 Liu S, Sun H Y, Sun L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution [J]. Corros. Sci., 2012, 65: 520
doi: 10.1016/j.corsci.2012.08.056
48 Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
48 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
49 Tang Y M, Zuo Y. The metastable pitting of mild steel in bicarbonate solutions [J]. Mater. Chem. Phys., 2004, 88: 221
doi: 10.1016/j.matchemphys.2004.07.014
50 Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885
doi: 10.1016/0010-938X(92)90191-5
51 Mattin S P, Burstein G T. Detailed resolution of microscopic depassivation events on stainless steel in chloride solution leading to pitting [J]. Phil. Mag. Lett., 1997, 76: 341
doi: 10.1080/095008397178940
52 Krakowiak S, Darowicki K, Ślepski P. Impedance of metastable pitting corrosion [J]. J. Electroanal. Chem., 2005, 575: 33
doi: 10.1016/j.jelechem.2004.09.001
53 Naghizadeh M, Nakhaie D, Zakeri M, et al. The effect of dichromate ion on the pitting corrosion of AISI 316 stainless steel part II: pit initiation and transition to stability [J]. Corros. Sci., 2015, 94: 420
doi: 10.1016/j.corsci.2015.02.025
54 Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57
doi: 10.1016/0010-938X(93)90133-2
55 Ebrahimi N, Moayed M H, Davoodi A. Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium [J]. Corros. Sci., 2011, 53: 1278
doi: 10.1016/j.corsci.2010.12.019
56 Shojaei E, Moayed M H, Mirjalili M, et al. Proposed stability product criterion for open hemispherical metastable pits formed in the crevices of different aspect ratios (l/d) on 316L stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109389
doi: 10.1016/j.corsci.2021.109389
57 Man C, Dong C F, Liang J X, et al. Characterization of the passive film and corrosion of martensitic AM355 stainless steel [J]. Anal. Lett., 2017, 50: 1091
doi: 10.1080/00032719.2016.1210617
58 Xie H, Yu C, Hua J, et al. Effect of NH+4 concentration on corrosion behavior of N80 steel in saturated-CO2 3%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 4:
58 解 辉, 于 超, 花 靖 等. NH+4浓度对N80钢在饱和CO2的3%NaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 4:
[1] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[2] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[3] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[4] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[5] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[6] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[7] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[8] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[9] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[10] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[11] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[12] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[13] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[14] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[15] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.