|
|
CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究 |
张成龙1,2, 张斌1, 朱敏1( ), 袁永锋1, 郭绍义1, 尹思敏1 |
1.浙江理工大学机械工程学院 杭州 310018 2.北京中科科仪股份有限公司 北京 100190 |
|
Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions |
ZHANG Chenglong1,2, ZHANG Bin1, ZHU Min1( ), YUAN Yongfeng1, GUO Shaoyi1, YIN Simin1 |
1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. Kyky Technology Co., Ltd., Beijing 100190, China |
引用本文:
张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
Chenglong ZHANG,
Bin ZHANG,
Min ZHU,
Yongfeng YUAN,
Shaoyi GUO,
Simin YIN.
Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 725-734.
1 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
|
2 |
Wang J Y, Yang H L, Huang H, et al. In-situ Mo nanoparticles strengthened CoCrNi medium entropy alloy [J]. J. Alloys. Compd., 2019, 798: 576
doi: 10.1016/j.jallcom.2019.05.208
|
3 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
|
4 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
|
5 |
Wang J Y, Yang H L, Ruan J M, et al. Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering [J]. J. Mater. Res., 2019, 34: 2126
doi: 10.1557/jmr.2019.96
|
6 |
Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
|
7 |
Moravcik I, Hadraba H, Li L L, et al. Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility [J]. Scr. Mater., 2020, 178: 391
doi: 10.1016/j.scriptamat.2019.12.007
|
8 |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
|
9 |
Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
doi: 10.1016/j.intermet.2013.10.024
|
10 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
11 |
Moravcik I, Cizek J, Kovacova Z, et al. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy [J]. Mater. Sci. Eng., 2017, 701A: 370
|
12 |
Lu K J, Chauhan A, Walter M, et al. Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi [J]. Scr. Mater., 2021, 194: 113667
doi: 10.1016/j.scriptamat.2020.113667
|
13 |
Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
doi: 10.1016/j.actamat.2017.02.036
|
14 |
Wang J Y, Li W H, Yang H L, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions [J]. Corros. Sci., 2020, 177: 108973
doi: 10.1016/j.corsci.2020.108973
|
15 |
Moravcik I, Peighambardoust N S, Motallebzadeh A, et al. Interstitial nitrogen enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution [J]. Mater. Charact., 2021, 172: 110869
doi: 10.1016/j.matchar.2020.110869
|
16 |
Zhang Z J, Yuan T C, Li R D. Corrosion performance of selective laser-melted equimolar CrCoNi medium-entropy alloy vs its cast counterpart in 3.5 wt% NaCl [J]. J. Alloys. Compd., 2021, 864: 158105
doi: 10.1016/j.jallcom.2020.158105
|
17 |
Toba K, Suzuki T, Kawano K, et al. Effect of relative humidity on ammonium chloride corrosion in refineries [J]. Corrosion, 2011, 67: 055005
|
18 |
Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method [J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
|
19 |
Ding J H, Zhang L, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures [J]. Appl. Surf. Sci., 2014, 289: 33
doi: 10.1016/j.apsusc.2013.10.080
|
20 |
Ernst P, Newman R C. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition [J]. Corros. Sci., 2002, 44: 943
doi: 10.1016/S0010-938X(01)00134-2
|
21 |
Du N, Tian W M, Zhao Q, et al. Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 807
doi: 10.3724/SP.J.1037.2012.00005
|
21 |
杜 楠, 田文明, 赵 晴 等. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理 [J]. 金属学报, 2012, 48: 807
|
22 |
Dastgerdi A A, Brenna A, Ormellese M, et al. Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel [J]. Corros. Sci., 2019, 159: 108160
doi: 10.1016/j.corsci.2019.108160
|
23 |
Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
doi: 10.1016/j.electacta.2014.02.107
|
24 |
Monrrabal G, Bautista A, Guzman S, et al. Influence of the cold working induced martensite on the electrochemical behavior of AISI 304 stainless steel surfaces [J]. J. Mater. Res. Technol., 2019, 8: 1335
doi: 10.1016/j.jmrt.2018.10.004
|
25 |
Chuaiphan W, Srijaroenpramong L. Evaluation of microstructure, mechanical properties and pitting corrosion in dissimilar of alternative low cost stainless steel grade 204Cu and 304 by GTA welding joint [J]. J. Mater. Res. Technol., 2020, 9: 5174
doi: 10.1016/j.jmrt.2020.03.034
|
26 |
Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
doi: 10.1016/j.corsci.2020.108520
|
27 |
Tian H Y, Fan L, Li Y Z, et al. Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment [J]. J. Electroanal. Chem., 2021, 894: 115368
doi: 10.1016/j.jelechem.2021.115368
|
28 |
Kritzer P, Boukis N, Dinjus E. Transpassive dissolution of alloy 625, chromium, nickel, and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen [J]. Corrosion, 2000, 56: 265
doi: 10.5006/1.3287652
|
29 |
Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
|
30 |
Pan H, Wang L W, Lin Y, et al. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution [J]. J. Mater. Sci. Technol., 2020, 54: 1
doi: 10.1016/j.jmst.2020.02.074
|
31 |
Zhu M, He F, Yuan Y F, et al. A comparative study on the corrosion behavior of CoCrNi medium-entropy alloy and 316L stainless steel in simulated marine environment [J]. Intermetallics, 2021, 139: 107370
doi: 10.1016/j.intermet.2021.107370
|
32 |
Zhu M, Zhang C L, Yuan Y F, et al. The corrosion behavior of CoCrNi medium entropy alloy with alternating current interference in carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2023, 32: 1
doi: 10.1007/s11665-022-07059-x
|
33 |
Araneda A A B, Kappes M A, Rodríguez M A, et al. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions [J]. Corros. Sci., 2022, 198: 110121
doi: 10.1016/j.corsci.2022.110121
|
34 |
Cui Z Y, Chen S S, Dou Y P, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
doi: 10.1016/j.corsci.2019.02.002
|
35 |
Chumlyakov Y I, Kireeva I V, Korotaev A D, et al. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels, [J]. Russ. Phys. J., 1996, 39: 189
doi: 10.1007/BF02067642
|
36 |
Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution [J]. Electrochim. Acta, 2013, 95: 1
doi: 10.1016/j.electacta.2013.02.024
|
37 |
Luo H, Su H Z, Dong C F, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution [J]. Appl. Surf. Sci., 2017, 400: 38
doi: 10.1016/j.apsusc.2016.12.180
|
38 |
Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
doi: 10.1016/j.corsci.2018.02.031
|
39 |
Mao F X, Dong C F, Sharifi-Asl S, et al. Passivity breakdown on copper: influence of chloride ion [J]. Electrochim. Acta, 2014, 144: 391
doi: 10.1016/j.electacta.2014.07.160
|
40 |
Feng H, Li H B, Wu X L, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34: 1781
doi: 10.1016/j.jmst.2018.03.021
|
41 |
Macdonald D D. The history of the point defect model for the passive state: a brief review of film growth aspects [J]. Electrochim. Acta, 2011, 56: 1761
doi: 10.1016/j.electacta.2010.11.005
|
42 |
Ahn S J, Kwon H S, Macdonald D D. Role of chloride ion in passivity breakdown on iron and nickel [J]. J. Electrochem. Soc., 2005, 152: B482
doi: 10.1149/1.2048247
|
43 |
Zhao B Z, Zhu M, Yuan Y Y, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
|
43 |
赵宝珠, 朱 敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42: 425
doi: 10.11902/1005.4537.2021.161
|
44 |
Ningshen S, Mudali U K, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci., 2007, 49: 481
doi: 10.1016/j.corsci.2006.05.041
|
45 |
Bai G S, Lu S P, Li D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of super 304H austenitic stainless steel [J]. J. Electrochem. Soc., 2015, 162: C473
doi: 10.1149/2.0601509jes
|
46 |
Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
doi: 10.1016/j.corsci.2008.03.006
|
47 |
Liu S, Sun H Y, Sun L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution [J]. Corros. Sci., 2012, 65: 520
doi: 10.1016/j.corsci.2012.08.056
|
48 |
Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
|
48 |
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
|
49 |
Tang Y M, Zuo Y. The metastable pitting of mild steel in bicarbonate solutions [J]. Mater. Chem. Phys., 2004, 88: 221
doi: 10.1016/j.matchemphys.2004.07.014
|
50 |
Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885
doi: 10.1016/0010-938X(92)90191-5
|
51 |
Mattin S P, Burstein G T. Detailed resolution of microscopic depassivation events on stainless steel in chloride solution leading to pitting [J]. Phil. Mag. Lett., 1997, 76: 341
doi: 10.1080/095008397178940
|
52 |
Krakowiak S, Darowicki K, Ślepski P. Impedance of metastable pitting corrosion [J]. J. Electroanal. Chem., 2005, 575: 33
doi: 10.1016/j.jelechem.2004.09.001
|
53 |
Naghizadeh M, Nakhaie D, Zakeri M, et al. The effect of dichromate ion on the pitting corrosion of AISI 316 stainless steel part II: pit initiation and transition to stability [J]. Corros. Sci., 2015, 94: 420
doi: 10.1016/j.corsci.2015.02.025
|
54 |
Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57
doi: 10.1016/0010-938X(93)90133-2
|
55 |
Ebrahimi N, Moayed M H, Davoodi A. Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium [J]. Corros. Sci., 2011, 53: 1278
doi: 10.1016/j.corsci.2010.12.019
|
56 |
Shojaei E, Moayed M H, Mirjalili M, et al. Proposed stability product criterion for open hemispherical metastable pits formed in the crevices of different aspect ratios (l/d) on 316L stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109389
doi: 10.1016/j.corsci.2021.109389
|
57 |
Man C, Dong C F, Liang J X, et al. Characterization of the passive film and corrosion of martensitic AM355 stainless steel [J]. Anal. Lett., 2017, 50: 1091
doi: 10.1080/00032719.2016.1210617
|
58 |
Xie H, Yu C, Hua J, et al. Effect of NH+4 concentration on corrosion behavior of N80 steel in saturated-CO2 3%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 4:
|
58 |
解 辉, 于 超, 花 靖 等. NH+4浓度对N80钢在饱和CO2的3%NaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 4:
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|