Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 803-811     CSTR: 32134.14.1005.4537.2023.149      DOI: 10.11902/1005.4537.2023.149
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响
倪雅1, 施方长1(), 戚继球2
1.江苏中矿大正表面工程技术有限公司 徐州 221000
2.中国矿业大学材料与物理学院 徐州 221116
Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy
NI Ya1, SHI Fangchang1(), QI Jiqiu2
1.Jiangsu CUMT Dazheng Surface Engineering Technology CO., Ltd., Xuzhou 221000, China
2.School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
全文: PDF(4542 KB)   HTML
摘要: 

将稀土Ce添加到Zn-0.6Cu-0.3Ti合金中,设计熔炼Zn-0.6Cu-0.3Ti-(0.3~0.6)Ce系列合金,采用X射线衍射仪 (XRD)、扫描电镜 (SEM)、电化学腐蚀测试等研究了Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响。结果表明,添加稀土Ce后,Zn-0.6Cu-0.3Ti合金中析出CeZn5微米颗粒,其分布于Zn基体内部或者相界面处,促进Zn基体以枝晶方式生长,并细化Zn枝晶和二次枝晶。Ce的添加在整体上提高了Zn-Cu-Ti合金的自腐蚀电位,降低合金的自腐蚀电流密度,添加0.3% Ce后,Zn-0.6Cu-0.3Ti合金的自腐蚀电流从2.76×10-3 A/cm2快速降低到5.85×10-4 A/cm2,腐蚀时间越长,Ce含量对Zn-Cu-Ti-Ce合金腐蚀性能的影响越弱。含Ce合金阻抗谱只有一个容抗弧,在腐蚀初期,Ce含量对容抗弧半径影响较小,随着腐蚀时间的延长,Ce的影响越来越明显,总体呈增大趋势。

关键词 Zn-Cu-Ti合金和涂层Ce添加组织特征腐蚀性能    
Abstract

A series of cast Ce-containing Zn-alloys Zn-0.6Cu-0.3Ti-(0.3-0.6)Ce was prepared, and the effect of Ce addition on the microstructure and corrosion resistance of Zn-0.6Cu-0.3Ti alloy were investigated by means of X-ray diffractometer, scanning electron microscope and electrochemical corrosion test. The results showed that due to the addition of the rare earth Ce, CeZn5 micron particles emerged in the alloys, which were distributed inside the Zn matrix or at phase boundaries, promoting the growth of the Zn matrix as dendrites and refining the Zn dendrites and secondary dendrites. Correspondingly, the free-corrosion current density of Zn-0.6Cu-0.3Ti alloy decreased rapidly from 2.76×10-3 A/cm2 to 5.85×10-4 A/cm2 after the doping of 0.3% Ce. The effect of Ce content on the corrosion properties of Zn-Cu-Ti-Ce alloy becomes weaker as the corrosion time increases. The impedance spectra of the alloy containing Ce has only one capacitive arc, in the early stage of corrosion, the influence of Ce content on the radius of the capacitive arc is small, with the extension of corrosion time, the influence of Ce becomes more and more obvious, and the overall trend is increasing.

Key wordsZn-Cu-Ti alloys and coating    element Ce doping    metallographic characteristic    corrosion resistance
收稿日期: 2023-05-08      32134.14.1005.4537.2023.149
ZTFLH:  TG174  
通讯作者: 施方长,E-mail: 843337412@qq.com,研究方向为金属材料、新能源材料及防火材料等     E-mail: 843337412@qq.com
Corresponding author: SHI Fangchang, E-mail: 843337412@qq.com     E-mail: 843337412@qq.com
作者简介: 倪雅,男,1984年生,博士,高级工程师,2021 年毕业于中国矿业大学,获博士学位。现就职于江苏中矿大正表面工程技术有限 公司,高级工程师,副总经理。倪雅博士主要研究方向为复杂环境下特大桥梁腐蚀控制技术。以提升国家 重大桥梁工程耐久性为导向,开发了适用于海洋湿热环境下Zn 基热喷涂金属涂层及智能涂装技术,解决 了深中通道、舟岱跨海通道等国家工程的钢结构耐久性问题。通过改性硅基纳米密封材料、干燥空气除 湿、低氧腐蚀抑制、腐蚀监测及全寿命预测技术的研发,在国内首次构建了成套大跨径悬索桥缆索智能腐 蚀控制技术,相关成果在南沙大桥桥、五峰山长江大桥、虎门大桥等国家重大工程中获得应用。先后主持 或参与国家铁路局、江苏省重点研发计划等多个省部级课题项目。现任全国金属与非金属覆盖层标准化 委员会委员,累计审查国家、行业标准近20 项,以第一作者或通讯作者发表论文20 余篇,授权发明专利16 件,主持或参与编制 国家标准6 项。入选江苏省333 高层次人才、江苏省产业教授、徐州市优秀人才等人才培养计划。获江苏省科学技术一等奖1 项、中国腐蚀与防护学会科学技术二等奖1项。2023 年获得中国腐蚀与防护学会杰出青年成就奖。

引用本文:

倪雅, 施方长, 戚继球. Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 803-811.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.149      或      https://www.jcscp.org/CN/Y2023/V43/I4/803

SampleCuTiCeZn
Zn-0.6Cu-0.3Ti0.60.3-Bal.
Zn-0.6Cu-0.3Ti-0.3Ce0.60.30.3Bal.
Zn-0.6Cu-0.3Ti-0.45Ce0.60.30.45Bal.
Zn-0.6Cu-0.3Ti-0.6Ce0.60.30.6Bal.
表1  试样化学成分 (mass fraction / %)
图1  Zn-0.6Cu-0.3Ti-Ce合金的XRD谱
图2  Zn-0.6Cu-0.3Ti-Ce合金的金相显微组织
图3  Zn-0.6Cu-0.3Ti-0.3Ce合金组织和成分的SEM和EPMA分析
图4  Zn-0.6Cu-0.3Ti-0.3Ce合金的透射组织形貌与能谱分析
图5  Zn-0.6Cu-0.3Ti-Ce合金的极化曲线
图6  Zn-0.6Cu-0.3Ti-Ce合金腐蚀不同时间后的极化曲线的拟合值
图7  Zn-0.6Cu-0.3Ti-Ce合金腐蚀不同时间后的极化曲线
图8  Zn-0.6Cu-0.3Ti-Ce合金腐蚀不同时间后的电化学阻抗谱
Corrosion time / dSpecimenR1 / Ω·cm2CPE1×10-4R2 / Ω·cm2R3 / Ω·cm2L / Hn
0Zn-0.6Cu-0.3Ti-0.3Ce4.0520.260287.394.291.210.5391
Zn-0.6Cu-0.3Ti-0.45Ce3.7010.467379.841.893.610.5998
Zn-0.6Cu-0.3Ti-0.6Ce3.9290.275285.762.192.030.5615
5Zn-0.6Cu-0.3Ti-0.3Ce3.6450.3284267.63.366.510.4577
Zn-0.6Cu-0.3Ti-0.45Ce2.2230.5361131.91.964.560.7523
Zn-0.6Cu-0.3Ti-0.6Ce2.2930.4085181.42.257.170.6587
10Zn-0.6Cu-0.3Ti-0.3Ce3.8580.3675302.74.733.710.5287
Zn-0.6Cu-0.3Ti-0.45Ce2.6890.7536153.61.898.320.5546
Zn-0.6Cu-0.3Ti-0.6Ce3.0260.4664231.82.563.640.7973
20Zn-0.6Cu-0.3Ti-0.3Ce3.3210.4185429.44.204.320.5575
Zn-0.6Cu-0.3Ti-0.45Ce2.0631.5387.92.036.450.6747
Zn-0.6Cu-0.3Ti-0.6Ce2.1390.5789326.92.364.630.6628
表2  Zn-0.6Cu-0.3Ti-Ce合金腐蚀不同时间后的阻抗曲线的拟合值
1 Wang Y H, Xiao L R, Zhao X J, et al. Corrosion behavior of Zn-Cu-Ti and Zn-Cu-Ti-Mg alloys in NaCl solution [J]. Mater. Corr.-Werkst. Und Korros, 2016, 67: 297
2 Ji S Y, Liang S H, Song K X, et al. Corrosion and electrochemical behavior of Zn-Cu-Ti alloy added with La in 3% NaOH solution [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31: 408
3 Faur M, Ghiban B. Effects of hot and cold rolling on the microstructure of low alloy Zn-Cu and Zn-Cu-Ti zinc alloy with improved corrosion resistance [J]. Metal. Int., 2009, 14(3): 23
4 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
4 王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
5 Zhu M, Du C W, Li X G, et al. Corrosion behavior of pure copper and copper-clad steels in soil at Dagang district [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 496
5 朱 敏, 杜翠薇, 李晓刚 等. 纯Cu和铜包钢在大港土壤环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2013, 33: 496
6 Zhu Z X, Zhang J, Xu B S. Effect of RE on anti-corrosion mechanism of arc sprayed Zn-Al-Mg coatings [J]. Adv. Mater. Res., 2011, 282/283: 279
7 Shi X M. Experimental and modeling studies on installation of arc sprayed Zn anodes for protection of reinforced concrete structures [J]. Front. Struct. Civil Eng., 2016, 10: 1
doi: 10.1007/s11709-016-0312-7
8 Zhao J H, Zhang Y Q, He J S, et al. Interfacial microstructure in joining of arc sprayed Al-Zn coating to AZ91D by solid-liquid compound casting [J]. Surf. Coat. Technol., 2016, 307: 301
doi: 10.1016/j.surfcoat.2016.08.078
9 Zhao Z P, Tariq N U H, Tang J R, et al. Influence of annealing on the microstructure and mechanical properties of Ti/steel clad plates fabricated via cold spray additive manufacturing and hot-rolling [J]. Mater. Sci. Eng.: A, 2020, 775: 138968
doi: 10.1016/j.msea.2020.138968
10 Petrovskiy P, Travyanov A, Cheverikin V V, et al. Effect of encapsulated hot isostatic pressing on properties of Ti6Al4V deposits produced by cold spray [J]. Int. J. Adv. Manuf. Technol., 2020, 107: 437
doi: 10.1007/s00170-020-05080-9
11 Singh G, Kumar S, Kumar R. Comparative study of hot corrosion behavior of thermal sprayed alumina and titanium oxide reinforced alumina coatings on boiler steel (2020 Mater. Res. Express 7 026527) [J]. Mater. Res. Express, 2021, 8: 019701
12 Daroonparvar M, Yajid M A M, Yusof N M, et al. Microstructural characterization and corrosion resistance evaluation of nanostructured Al and Al/AlCr coated Mg-Zn-Ce-La alloy [J]. J. Alloy. Compd., 2014, 615: 657
doi: 10.1016/j.jallcom.2014.06.077
13 Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
13 达 波, 余红发, 麻海燕 等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
14 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
14 曹京宜, 方志刚, 李亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
doi: 10.11902/1005.4537.2021.003
15 Xiong J B, Li T M, Shen Y, et al. Obtainment of zinc-containing rare earth alloy coating of hot-galvanized steel tube [J]. Steel Pipe, 2013, 42(1): 25
15 熊俊波, 李同明, 沈 阳 等. 钢管热镀锌基稀土合金镀层的制备 [J]. 钢管, 2013, 42(1): 25
16 Amadeh A, Pahlevani B, Heshmati-Manesh S. Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings [J]. Corros. Sci., 2002, 44: 2321
doi: 10.1016/S0010-938X(02)00043-4
17 Ji S Y, Liang S H, Song K X, et al. Effect of La on microstructure and mechanical properties of Zn-Cu-Ti alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 1649
17 冀盛亚, 梁淑华, 宋克兴 等. 稀土La对Zn-Cu-Ti合金显微组织和力学性能的影响 [J]. 中国有色金属学报, 2016, 26: 1649
18 Attar H, Prashanth K G, Zhang L C, et al. Effect of powder particle shape on the properties of In situ Ti-TiB composite materials produced by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 1001
doi: 10.1016/j.jmst.2015.08.007
19 Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
19 姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
doi: 10.11902/1005.4537.2020.023
20 Winiarski J, Tylus W, Szczygiel B. EIS and XPS investigations on the corrosion mechanism of ternary Zn-Co-Mo alloy coatings in NaCl solution [J]. Appl. Surf. Sci., 2016, 364: 455
doi: 10.1016/j.apsusc.2015.12.183
21 Lou M, Lu Y F, Ma C L, et al. Study on Corrosion-resisting properties of high-speed Arc sprayed Zn-Al alloy coating in caverns [J]. Adv. Mater. Res., 2011, 399-401: 2072
22 Bobzin K, Öte M, Knoch M A, et al. Electrical resistivity of wire arc sprayed Zn and Cu coatings for in-mold-metal-spraying [A]. 20th Chemnitz Seminar on Materials Engineering [C]. Chemnitz: IOP, 2018: 012011
[1] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[2] 刘云, 任延杰, 陈荐, 周立波, 邱玮, 黄伟颖, 牛焱. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
[3] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[4] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[5] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[6] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[7] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[8] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[9] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[10] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[11] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[12] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[13] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[14] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[15] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.