Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 127-134     CSTR: 32134.14.1005.4537.2022.001      DOI: 10.11902/1005.4537.2022.001
  研究报告 本期目录 | 过刊浏览 |
20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究
刘近增1,2, 邢少华1(), 钱峣1,2, 张大磊2, 马力1
1.中国船舶集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
2.中国石油大学 (华东) 材料科学与工程学院 青岛 266580
Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater
LIU Jinzeng1,2, XING Shaohua1(), QIAN Yao1,2, ZHANG Dalei2, MA Li1
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(9719 KB)   HTML
摘要: 

20#钢穿舱件和锡青铜阀电偶腐蚀是船舶海水管路系统严重腐蚀部位之一。为控制20#钢/锡青铜电偶腐蚀延长海水管路系统寿命,本文通过原位测量20#钢管材和ZCuSn5Pb5Zn5锡青铜管材在静态以及1、3和5 m/s流速海水中的电偶电位和电偶电流,分析电偶腐蚀速率随时间和流速的变化规律;同时采用扫描电镜 (SEM) 和激光Raman光谱仪分析腐蚀形貌和腐蚀产物组分。结果表明,在不同流速海水中,20#钢与ZCuSn5Pb5Zn5合金间存在明显的电偶腐蚀倾向,20#钢作为阳极加剧腐蚀,ZCuSn5Pb5Zn5合金作为阴极受到保护;相比于静态海水,20#钢阳极极化电流密度和ZCuSn5Pb5Zn5合金阴极极化电流密度在流动海水中显著增加,电偶腐蚀显著加剧,1 m/s流速下的电偶腐蚀速率是静态下的17.5倍;当海水流速达到5 m/s后,20#钢表面形成了致密性较高、活性低的腐蚀产物沉积层,电偶腐蚀速率减小。

关键词 电偶腐蚀流动海水20#钢锡青铜原位测量    
Abstract

The galvanic corrosion of the couples of 20# steel penetrating cabin parts and tin bronze valve is the severely corroded parts in the sea water pipeline system of ships. In order to control the galvanic corrosion of the couple 20# steel/tin bronze to extend the life of the seawater pipeline system, the galvanic potential and galvanic current of the couple 20# steel pipe/tin bronze pipe in static and flowing sea water of 1, 3, and 5 m/s were assessed in-situ, respectively. Whilst, the variations of galvanic corrosion rate with time and flow rate were acquired; At the same time, scanning electron microscope (SEM) and laser Raman spectrometer were used to analyze the corrosion morphology and the composition of corrosion products. The results show that there is an obvious galvanic corrosion tendency between 20# steel and ZCuSn5Pb5Zn5 in seawater of different flow rates, namely 20# steel acts as the anode, and presents intensified corrosion tendency, while ZCuSn5Pb5Zn5 acts as the cathode. The anodic polarization current density of 20# steel and the cathodic polarization current density of ZCuSn5Pb5Zn5 increase significantly in flowing seawater rather than in static seawater, therewith the galvanic corrosion is significantly intensified. The galvanic couple in flowing seawater of 1 m/s presents a corrosion rate 17.5 times higher than that in static seawater. When the seawater flow rate reaches 5 m/s, a corrosion product scale with higher compactness and low activity is formed on the surface of 20# steel, and the galvanic corrosion rate decreases.

Key wordsgalvanic corrosion    flowing sea water    20# steel    tin bronze    in-situ measurement
收稿日期: 2022-01-01      32134.14.1005.4537.2022.001
ZTFLH:  TG174  
作者简介: 刘近增,男,1996年生,硕士生

引用本文:

刘近增, 邢少华, 钱峣, 张大磊, 马力. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
Jinzeng LIU, Shaohua XING, Yao QIAN, Dalei ZHANG, Li MA. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 127-134.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.001      或      https://www.jcscp.org/CN/Y2023/V43/I1/127

图1  管路冲刷装置及电解池装置示意图
图2  20#钢和ZCuSn5Pb5Zn5合金在不同流速海水中的平均腐蚀电位
图3  20#钢/ZCuSn5Pb5Zn5合金偶对的电偶电位和电偶电流随时间的变化
图4  20#钢/ZCuSn5Pb5Zn5合金偶在不同流速下的电偶电位及电偶电流密度随时间变化曲线
图5  电偶电流密度和电偶电位随流速变化曲线
图6  偶接20#钢在不同流速冲刷后的腐蚀形貌
图7  偶接20#钢腐蚀并经酸洗去除产物膜后的三维表面形貌
图8  阳极20#钢在不同流速海水中腐蚀后的微观形貌
图9  20#钢在不同流速海水中形成的表面腐蚀产物的拉曼光谱分析
图10  阳极20#钢在不同流速海水中腐蚀并酸洗去除表面产物膜后的微观形貌
图11  实验材料在不同流速海水中的极化曲线
图12  20#钢/ZCuSn5Pb5Zn5合金偶在海水中的电偶腐蚀机理图
1 Zhou Y F, Wang H R. Review of research on the environmental corrosion of ship seawater systems [J]. Dev. Appl. Mater., 2008, 23(3): 16
1 周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展 [J]. 材料开发与应用, 2008, 23(3): 16
2 Yang S W, Xi H Z, Xie F Z, et al. Study of naval vessel galvanic corrosion [J]. J. Harbin Eng. Univ., 2000, 21(6): 34
2 杨世伟, 席慧智, 谢辅洲 等. 舰船材料的电偶腐蚀研究 [J]. 哈尔滨工程大学学报, 2000, 21(6): 34
3 Wang H B, Fang Z G. Control of galvanic corrosion of dissimilar metals of seawater pipelines in naval vessels [J]. Corros. Sci. Prot. Technol., 2007, 19: 145
3 王虹斌, 方志刚. 舰船海水管系异金属电偶腐蚀的控制 [J]. 腐蚀科学与防护技术, 2007, 19: 145
4 Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 46
4 黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 46
5 Zhu X R, Huang G Q, Lin L Y, et al. Research progress on the long period corrosion law of metallic materials in seawater [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 142
5 朱相荣, 黄桂桥, 林乐耘 等. 金属材料长周期海水腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2005, 25: 142
6 Wang P, Pang K, Zhang H F, et al. Analysis of corrosion failure of bronze cut-off valve in marine seawater pipe system [J]. Mater. Prot., 2018, 51(10): 143
6 王培, 逄昆, 张海峰 等. 船舶海水管路青铜截止阀腐蚀失效分析 [J]. 材料保护, 2018, 51(10): 143
7 Cao C N. Principle of Corrosion Electrochemistry [M]. 2nd ed. Beijing: Chemical Industry Press, 2004
7 曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004
8 Glover T J. Copper-nickel alloy for the construction of ship and boat hulls [J]. Br. Corros. J., 1982, 17: 155
doi: 10.1179/000705982798274228
9 Du M, Guo Q K, Zhou C J. Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 263
9 杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2006, 26: 263
10 Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
10 王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416
11 Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
11 陈兴伟, 吴建华, 王佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363
12 Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corros. Sci., 2004, 46: 955
doi: 10.1016/S0010-938X(03)00190-2
13 Zhu J, Zhang Q B, Chen Y, et al. Progress of study on Erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
13 朱娟, 张乔斌, 陈宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
14 Harvey T J, Wharton J A, Wood R J K. Development of synergy model for erosion-corrosion of carbon steel in a slurry pot [J]. Tribol. Mater. Surf. Interfaces, 2007, 1: 33
doi: 10.1179/175158407X181471
15 Li Q, Tang X, Li Y. Progress in research methods for erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 399
15 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2014, 34: 399
16 Zhu X R, Dai M A, Chen Z J, et al. Corrosion behaviour of metallic materials in high velocity seawater [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 173
16 朱相荣, 戴明安, 陈振进 等. 高流速海水中金属材料的腐蚀行为 [J]. 中国腐蚀与防护学报, 1992, 12: 173
17 Dai M A, Zhang Y, Yin Z A, et al. Kinetic law of galvanic corrosion in flowing seawater [J]. Corros. Sci. Prot. Technol., 1992, 4: 209
17 戴明安, 张英, 殷正安 等. 流动海水中电偶腐蚀动力学规律 [J]. 腐蚀科学与防护技术, 1992, 4: 209
18 Sun B K, Li N, Du M. Galvanic Corrosion behavior of B10/H62 couple in Seawater of different flowing rate [J]. Mater. Prot., 2011, 44(7): 20
18 孙保库, 李宁, 杜敏. 不同流速海水中B10/H62电偶腐蚀规律 [J]. 材料保护, 2011, 44(7): 20
19 Wang J, Cheng C Q, Wang D Y, et al. Effect of flowing rate on galvanic corrosion associated with 316L/2205 and 431/2205 stainless steel couples in 3.5%NaCl solution [J]. Corros. Prot., 2015, 36: 442
19 王健, 程从前, 王冬颖 等. 流动对316L/2205和431/2205不锈钢在3.5%NaCl溶液中电偶腐蚀的影响 [J]. 腐蚀与防护, 2015, 36: 442
20 Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al Alloy/Q235 Mild Steel/304 Stainless Steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
doi: 10.1016/j.jmst.2019.04.022
21 Wu X Y, Sun J K, Wang J M, et al. Investigation on galvanic corrosion behaviors of CFRPs and Aluminum Alloys systems for automotive applications [J]. Mater. Corros., 2019, 70: 1036
22 El-Dahshan M E, El Din A M S, Haggag H H. Galvanic corrosion in the systems Titanium/316 L Stainless Steel/Al Brass in Arabian gulf water [J]. Desalination, 2002, 142: 161
doi: 10.1016/S0011-9164(01)00435-0
23 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
23 白苗苗, 白子恒, 蒋立 等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
24 Liu J. Study on the deterioration processes of organic coating/low alloy steel systems in simulated deep-sea environment [D]. Qingdao: Ocean University of China, 2011
24 刘杰. 模拟深海环境下有机涂层/低合金钢体系失效过程的研究 [D]. 青岛: 中国海洋大学, 2011
25 Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
25 刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
26 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 Steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
26 王志高, 海潮, 姜杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
27 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
27 刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
[1] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[3] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[4] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[5] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[6] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[7] 邢少华, 刘近增, 白舒宇, 钱峣, 张大磊, 马力. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[8] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[9] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[10] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[11] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[12] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[13] 丁奕, 王力伟, 刘德运, 王昕. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[14] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[15] 蔡建敏, 关蕾, 李雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.