Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 733-742    DOI: 10.11902/1005.4537.2022.052
  研究报告 本期目录 | 过刊浏览 |
纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化
张勤1, 梁涛沙2, 王文2, 赵朗朗1, 姜岳峰1()
1.中核四0四有限公司 兰州 732850
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃
ZHANG Qin1, LIANG Taosha2, WANG Wen2, ZHAO Langlang1, JIANG Yuefeng1()
1.The 404 Company Limited, China National Nuclear Corporation, Lanzhou 732850, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(7685 KB)   HTML
摘要: 

利用聚焦离子束扫描电镜和扫描透射电镜研究了粗晶和纳米晶结构的Ni-12Cr合金在800 ℃空气中氧化的动力学行为和氧化膜的结构演化。结果表明,氧化初期25 s时,粗晶和纳米晶的氧化膜均为外层NiO和内层富Cr的双层结构。随着氧化的进行,粗晶氧化膜演化为NiO/ (NiO+NiCr2O4) /疏松Cr2O3/内氧化层的多层结构;而纳米晶发生了Cr的选择性氧化,形成了保护性Cr2O3膜,Cr2O3以非晶晶化的方式形核生长;纳米晶保护性氧化膜的形成早于纳米晶粒的粗化。根据有效扩散系数修正的Wagner理论,Ni-12Cr合金在800 ℃发生由内氧化向外氧化转变的临界晶粒尺寸约为94 nm。纳米晶的氧化动力学曲线分为两个阶段,转折点约为氧化1 h。两阶段均符合抛物线规律,抛物线速率常数kp分别为1.76×10-13和1.58×10-14 cm2·s-1

关键词 纳米晶Ni-Cr合金高温氧化选择性氧化    
Abstract

Nanocrystallization can increase the diffusion rate of alloying elements, such as Cr, Al, and then improve the high-temperature oxidation resistance of metallic alloys due to the presence of high-volume fraction of grain boundaries. Up to now, the studies on the effect of nano-structure on the oxidation behavior of alloys mainly focus on the oxidation kinetics and the structure of oxide scale at steady stage. The microstructure of oxide scale formed on nano-structured alloys during oxidation, especially at the initial stage, is lack of characterization. At the same time, nano-structured alloys are far away from thermodynamic equilibrium state, which inevitably result in the grain coarsening during oxidation process. Therefore, it is necessary to characterize the microstructure of oxide scale on nano-structured alloys to understand the relationship between grain coarsening of alloy and the formation of oxide scale on its surface. In this study, the oxidation behavior of coarse-grained (CG) and nanocrystalline (NC) Ni-12Cr alloys (mass fraction in nominal chemical composition) at 800 ℃ in air were studied. The NC alloy was prepared by severe plastic deformation, and the average grain size is around 42 nm. Focused ion beam (FIB) microscope and scanning transmission electron microscope (STEM) were used to characterize the microstructure and composition distribution of the scale. The results demonstrate that a two-layered scale, external NiO and internal Cr-rich layer, is formed on both of CG and NC alloys after oxidation for 25 s. The scale on CG alloy develops into a multilayered structure, which includes NiO/(NiO+NiCr2O4)/porous Cr2O3/internal oxidation zone after oxidation for 10 min, while the Cr-rich layer on NC alloy crystallizes and forms a protective Cr2O3 scale after oxidation for 2 min. The oxidation kinetics of NC alloy consists of two stages, both of which follow the parabolic law. The parabolic rate constants of the two stages are 1.76×10-13 cm2·s-1 (within 1 h) and 1.58×10-14 cm2·s-1 (1-109 h) respectively, both of which are about 3-4 orders of magnitude lower than that of CG alloy. The study on grain growth kinetics of alloy indicates that the protective chromia scale forms before the significant coarsening of nano-grain. According to Wagner theory with the effective diffusion coefficient, the critical grain size for Ni-12Cr alloy to change from internal oxidation to external oxidation is about 94 nm at 800 ℃.

Key wordsNanocrystalline    Ni-Cr alloy    high temperature oxidation    selective oxidation
收稿日期: 2022-03-01     
ZTFLH:  TG174  
基金资助:国家自然科学基金(52101107);中国博士后科学基金(2021M703274);中核集团2021年青年英才科研项目(75)
通讯作者: 姜岳峰     E-mail: jiangyfd@mail.ustc.edu.cn
Corresponding author: JIANG Yuefeng     E-mail: jiangyfd@mail.ustc.edu.cn
作者简介: 张勤,女,1989年生,博士,工程师
梁涛沙,女,1991年生,博士,助理研究员

引用本文:

张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
Qin ZHANG, Taosha LIANG, Wen WANG, Langlang ZHAO, Yuefeng JIANG. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 733-742.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.052      或      https://www.jcscp.org/CN/Y2022/V42/I5/733

图1  变形态Ni-12Cr合金微观组织
图2  粗晶和纳米晶结构Ni-12Cr合金在800 ℃空气中氧化109 h的氧化动力学曲线和抛物线速率常数
图3  粗晶Ni-12Cr合金在800 ℃下空气中氧化不同时间截面形貌
图4  粗晶在800 ℃空气中氧化25 s截面TEM形貌和EDS分析结果
图5  粗晶样品在800 ℃空气中氧化10 min后的截面TEM形貌、选区电子/纳米束衍射和EDS分析结果
图6  纳米晶在800 ℃空气中氧化25 s氧化膜截面形貌、纳米束衍射和元素分布图
图7  纳米晶在800 ℃空气中氧化2 min氧化膜截面形貌、纳米束衍射和元素分布图
图8  纳米晶在800 ℃空气中氧化1 h氧化膜截面形貌和元素分布图
图9  纳米晶在800 ℃空气中氧化10 h氧化膜截面形貌和元素分布图
图10  纳米晶Ni-12Cr合金在800 °C下保温不同时间后的晶粒尺寸分布
图11  粗晶和纳米晶Ni-12Cr合金 (800 ℃) 与纯Ni (800 ℃)[31]、粗晶Ni-20Cr合金 (800~1000 ℃)[19,32]氧化的抛物线速率常数对比
1 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Oxford: Elsevier, 2008: 185
2 Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
3 Wang F H. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales [J]. Oxid. Met., 1997, 48: 215
doi: 10.1007/BF01670500
4 Hart E W. On the role of dislocations in bulk diffusion [J]. Acta Metall., 1957, 5: 597
doi: 10.1016/0001-6160(57)90127-X
5 Merz M D. The oxidation resistance of fine-grained sputter-deposited 304 stainless steel [J]. Metall. Mater. Trans., 1979, 10A: 71
6 Baer D R, Merz M D. Differences in oxides on large-and small-grained 304 stainless steel [J]. Metall. Mater. Trans., 1980, 11A: 1973
7 Yurek G J, Eisen D, Garratt-Reed A. Oxidation behavior of a fine-grained rapidly solidified 18-8 stainless steel [J]. Metall. Mater. Trans., 1982, 13A: 473
8 Wang F H. Oxidation resistance of sputtered Ni3(AlCr) nanocrystalline coating [J]. Oxid. Met., 1997, 47: 247
doi: 10.1007/BF01668513
9 Liu Z Y, Gao W, Dahm K L, et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater., 1998, 46: 1691
doi: 10.1016/S1359-6454(97)00346-7
10 Fu G Y, Liu Q, Long Y Y, et al. Effect of grain-size reduction on oxidation behavior of Fe-Cr and Ni-Cr alloys [J]. Corros. Sci. Prot. Technol., 2005, 17: 384
10 付广艳, 刘群, 龙媛媛 等. 晶粒细化对Fe-Cr、Ni-Cr合金氧化行为的影响 [J]. 腐蚀科学与防护技术, 2005, 17: 384
11 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: A review [J]. Corros. Commun., 2021, 1: 58
doi: 10.1016/j.corcom.2021.06.003
12 Kursumovic A, Hühne R, Tomov R, et al. Investigation of the growth and stability of (100)[001] NiO films grown by thermal oxidation of textured (100)[001] Ni tapes for coated conductor applications during oxygen exposure from 700 to 1400 ℃ [J]. Acta Mater., 2003, 51: 3759
doi: 10.1016/S1359-6454(03)00190-3
13 Peng X. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites [J]. Nanoscale, 2010, 2: 262
doi: 10.1039/B9NR00118B
14 Lu K, Zhou F. Recent research progress on nanocrystalline materials [J]. Acta Metall. Sin., 1997, 33: 99
14 卢柯, 周飞. 纳米晶体材料的研究现状 [J]. 金属学报, 1997, 33: 99
15 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
16 Xu W, Zhang B, Li X Y, et al. Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al-Mg alloys [J]. Science, 2021, 373: 683
doi: 10.1126/science.abh0700 pmid: 34353952
17 Liu Z Y, Gao W, Dahm K, et al. The effect of coating grain size on the selective oxidation behaviour of Ni-Cr-Al alloy [J]. Scr. Mater., 1997, 37: 1551
doi: 10.1016/S1359-6462(97)00291-1
18 Quan C, He Y D, Zhang J. High temperature oxidation behavior of a novel Ni-Cr binary alloy coating prepared by cathode plasma electrolytic deposition [J]. Surf. Coat. Technol., 2016, 292: 11
doi: 10.1016/j.surfcoat.2016.03.012
19 Calvarin G, Molins R, Huntz A M. Oxidation mechanism of Ni-20Cr foils and its relation to the oxide-scale microstructure [J]. Oxid. Met., 2000, 53: 25
doi: 10.1023/A:1004578513020
20 Yu X X, Gulec A, Andolina C M, et al. In situ observations of early stage oxidation of Ni-Cr and Ni-Cr-Mo alloys [J]. Corrosion, 2018, 74: 939
doi: 10.5006/2807
21 Wagner C. Types of reactions in the oxidation of alloys [J]. J. Electrochem. Soc., 1959, 63: 771
22 Rapp R A. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta Metall., 1961, 9: 730
doi: 10.1016/0001-6160(61)90103-1
23 Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
doi: 10.1149/2.1021706jes
24 Atkinson H V. A review of the role of short-circuit diffusion in the oxidation of nickel, chromium, and nickel-chromium alloys [J]. Oxid. Met., 1985, 24: 177
doi: 10.1007/BF00664231
25 Xie Y, Huang Y C, Li Y H, et al. A novel method to promote selective oxidation of Ni-Cr alloys: Surface spreading α-Al2O3 nanoparticles [J]. Corros. Sci., 2021, 190: 109717
doi: 10.1016/j.corsci.2021.109717
26 Andreev Y Y, Shumkin A A. A new theoretical approach to the thermodynamic calculation of high-temperature oxidation of Ni-Cr alloys [J]. Prot. Met., 2006, 42: 221
doi: 10.1134/S0033173206030039
27 Wang Z B, Lu K. Diffusion and surface alloying of gradient nanostructured metals [J]. Beilstein J. Nanotechnol., 2017, 8: 547
doi: 10.3762/bjnano.8.59
28 Peng X, Wang F H. High temperature corrosion of nanocrystalline metallic materials [J]. Acta Metall. Sin., 2014, 50: 202
28 彭晓, 王福会. 纳米晶金属材料的高温腐蚀行为 [J]. 金属学报, 2014, 50: 202
doi: 10.3724/SP.J.1037.2013.00604
29 Balluffi R W. Grain boundary diffusion mechanisms in metals [J]. Metall. Mater. Trans., 1982, 13B: 527
30 Gleiter H. Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33: 223
doi: 10.1016/0079-6425(89)90001-7
31 Douglass D L, Armijo J S. The effect of silicon and manganese on the oxidation mechanism of Ni-20 Cr [J]. Oxid. Met., 1970, 2: 207
doi: 10.1007/BF00603657
32 Hampikian J M, Potter D I. The effects of yttrium ion implantation on the oxidation of nickel-chromium alloys. II. Oxidation of yttrium implanted Ni-20Cr [J]. Oxid. Met., 1992, 38: 139
doi: 10.1007/BF00665049
33 Halem Z, Halem N, Abrudeanu M, et al. Transport properties of Al or Cr-doped nickel oxide relevant to the thermal oxidation of dilute Ni-Al and Ni-Cr alloys [J]. Solid State Ionics, 2016, 297: 13
doi: 10.1016/j.ssi.2016.09.023
34 Wood G C, Hodgkiess T. Mechanism of oxidation of dilute nickel-chromium alloys [J]. Nature, 1966, 211: 1358
doi: 10.1038/2111358a0
35 Zhao Y, Yang G X, Yuan C, et al. Isothermal oxidation behavior of a cast Ni-base superalloy K447 [J]. Corros. Sci. Prot. Technol., 2007, 19: 1
35 赵越, 杨功显, 袁超 等. 铸造镍基高温合金K447的高温氧化行为 [J]. 腐蚀科学与防护技术, 2007, 19: 1
36 Zhang J, Huang J P, Shang G F, et al. Effect of surface roughness on oxidation behavior of Ni-Cr-Al alloy at high temperatures [J]. Corros. Sci. Prot. Technol., 2016, 28: 531
36 张俊, 黄嘉鹏, 尚根峰 等. 不同表面粗糙度镍铬铝合金的高温氧化行为 [J]. 腐蚀科学与防护技术, 2016, 28: 531
37 Quadakkers W J, Naumenko D, Wessel E, et al. Growth rates of alumina scales on Fe-Cr-Al alloys [J]. Oxid. Met., 2004, 61: 17
doi: 10.1023/B:OXID.0000016274.78642.ae
38 Rybicki G C, Smialek J L. Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl+Zr [J]. Oxid. Met., 1989, 31: 275
doi: 10.1007/BF00846690
39 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 82
39 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 82
[1] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[2] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[3] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[4] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[5] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[6] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[7] 阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[8] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[9] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[10] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[11] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[13] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[14] 冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.
[15] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.