Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 724-732    DOI: 10.11902/1005.4537.2021.260
  研究报告 本期目录 | 过刊浏览 |
溶解氧和流速对B30铜镍合金在海水中成膜的影响
陈翰林1, 马力2, 黄国胜2, 杜敏1()
1.中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
2.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Effect of Dissolved Oxygen and Flow Rate of Seawater on Film Formation of B30 Cu-Ni Alloy
CHEN Hanlin1, MA Li2, HUANG Guosheng2, DU Min1()
1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China
全文: PDF(7150 KB)   HTML
摘要: 

采用电化学以及表面观察的方法研究了海水的溶解氧和流速对于B30铜镍合金表面成膜的影响。结果表明,材料表面膜层的保护性随着海水中溶解氧浓度的提高而提高;在流速为0~2.0 m/s范围内,随着流速的增大,形成的膜层质量呈现先变好再变差的趋势;在流速为0.8 m/s左右时,形成的膜层最为致密完整。溶解氧通过影响其成膜的反应过程影响成膜质量;流速通过改变试样周围的溶解氧浓度以及产生一个冲刷作用来影响成膜,溶解氧浓度的提高有利于膜层的形成,海水的冲刷作用则会破坏形成的膜层。

关键词 B30铜镍合金成膜流速溶解氧    
Abstract

B30 Cu-Ni alloy was widely used in the manufacture of marine condenser because of its excellent characteristics, but there was still a serious pitting problem in the actual working conditions. Because the corrosion resistance of B30 Cu-Ni alloy was related to the protective film formed on its surface, therefore, it is worthy to clarify the influence factors for the passivation film formation of B30 Cu-Ni alloy in an artificial seawater. Hence this article aims to examine the effect of dissolved oxygen and flow rate of the seawater on the film formation by means of electrochemical measurement and surface observation methods, so that the optimal conditions for the film formation were determined. The results showed that the protective property of the surface film increased with the increase of dissolved oxygen concentration (DO) in the seawater. In the range of flow rate of 0-2.0 m/s, with the increase of flow rate, the quality of the formed film first became better and then worse. The film formed on B30 Cu-Ni alloy was the most compact and complete when the flow rate was about 0.8 m/s. Dissolved oxygen affected the quality of film formation by varying the reaction process of film formation. The flow velocity affected the film formation by changing the dissolved oxygen concentration around the sample and producing a scouring effect. The increase of dissolved oxygen concentration was conducive to the formation of the film, while the scouring effect of seawater would destroy the formed film.

Key wordsB30 Cu-Ni alloy    film formation    flow rate    dissolved oxygen
收稿日期: 2021-09-27     
ZTFLH:  TG174  
基金资助:国家自然科学基金(U1706221)
通讯作者: 杜敏     E-mail: ssdm99@ouc.edu.cn
Corresponding author: DU Min     E-mail: ssdm99@ouc.edu.cn
作者简介: 陈翰林,男,1997年生,硕士生

引用本文:

陈翰林, 马力, 黄国胜, 杜敏. 溶解氧和流速对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 724-732.
Hanlin CHEN, Li MA, Guosheng HUANG, Min DU. Effect of Dissolved Oxygen and Flow Rate of Seawater on Film Formation of B30 Cu-Ni Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 724-732.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.260      或      https://www.jcscp.org/CN/Y2022/V42/I5/724

图1  B30铜镍合金在不同溶解氧浓度海水中的开路电位
图2  B30铜镍合金在不同溶解氧浓度海水中的EIS图
图3  B30铜镍合金在海水中电化学阻抗拟合等效电路图
DO / mg·kg-1T / dRct / kΩ·cm2ndlRf / kΩ·cm2nf
3.5184940.84------
579700.84------
11309590.8110.70.71
15217510.7814.30.68
19268380.8118.80.66
8.0198290.9530.90.82
5117960.847.30.84
11112440.739.40.73
151433200.8420.40.76
19182370.8513.90.78
14.011411400.63899.10.77
5438970.917.00.87
115049100.702846.00.80
1526284000.6310547.00.80
1919479000.6814675.00.82
表1  B30铜镍合金不同溶解氧浓度的海水中电化学阻抗拟合数据
ElementCompoundDO / mg·kg-1
3.58.014.0
CuCuO, CuCl294.0491.4421.14
Cu2O, CuCl5.968.5678.86
ClCuCl237.0131.7337.23
CuCl62.9968.2762.77
表2  B30铜镍合金在不同溶解氧浓度海水中的XPS图拟合结果
Flow rate / m·s-1T / dRct / kΩ·cm2ndlRf / kΩ·cm2nf
0198290.9530.90.82
5117960.847.30.84
11112440.739.40.73
151433200.8420.40.76
19182370.8513.90.78
0.8183100.66628.00.90
536420.67365.00.88
1185680.96943.00.85
1524955000.922109.00.77
1930445000.7811902.00.80
2.01138320.59638.00.91
548520.661678.00.84
11304110.6814544.00.74
15734940.6015915.00.74
191038800.6630635.00.72
表3  B30铜镍合金在不同流速海水中的电化学阻抗拟合数据
图4  B30铜镍合金在不同溶解氧浓度海水中浸泡20 d的SEM图
图5  B30铜镍合金在不同流速海水中的开路电位
图6  B30铜镍合金在不同流速海水中的EIS图
ElementCompoundFlow rate / m·s-1
00.82.0
CuCuO, CuCl291.4434.4618.47
Cu2O, CuCl8.5665.5481.53
ClCuCl231.7341.2839.29
CuCl68.2758.7260.71
表4  B30铜镍合金在不同流速海水中的XPS拟合结果
图7  B30铜镍合金在不同流速海水中浸泡20 d的SEM图
1 Shi Z Y, Liu B, Liu Y, et al. Progress of corrosion behavior and anti-corrosion technology for typical copper-nickel alloys under marine environment [J]. Equip. Environ. Eng., 2020, 17(8): 38
1 石泽耀, 刘斌, 刘岩 等. 典型铜镍合金在海洋环境中腐蚀行为与防护技术研究进展 [J]. 装备环境工程, 2020, 17(8): 38
2 Zhu X L, Lin L Y, Lei T Q. Process of formation of corrosion films on alloy 70Cu-30Ni in seawater [J]. Acta Metall. Sin., 1997, 33: 1256
2 朱小龙, 林乐耘, 雷廷权. 70Cu-30Ni合金海水腐蚀产物膜形成过程 [J]. 金属学报, 1997, 33: 1256
3 Li Y X, Ives M B, Coley K S, et al. Corrosion of nickel-containing stainless steel in concentrated sulphuric acid [J]. Corros. Sci., 2004, 46: 1969
doi: 10.1016/j.corsci.2003.10.017
4 Glover T J. Copper-Nickel alloy for the construction of ship and boat hulls [J]. Br. Corros. J., 1982, 17: 155
doi: 10.1179/000705982798274228
5 Alfantazi A M, Ahmed T M, Tromans D. Corrosion behavior of copper alloys in chloride media [J]. Mater. Des., 2009, 30: 2425
doi: 10.1016/j.matdes.2008.10.015
6 Lin L Y, Liu S F, Zhu X L. Seawater-corrosion-induced intergranular precipitation in Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 1
6 林乐耘, 刘少峰, 朱小龙. 海水腐蚀导致铜镍合金的沿晶析出 [J]. 中国腐蚀与防护学报, 1997, 17: 1
7 Shen H, Gao F, Zhang G G, et al. Material selection and anti-corrosion measures of seawater piping in warship [J]. Ship Eng., 2002, 32(4): 43
7 沈宏, 高峰, 张关根 等. 舰船海水管系选材及防腐对策 [J]. 船舶工程, 2002, 32(4): 43
8 Ravindranath K, Tanoli N, Gopal H. Failure investigation of brass heat exchanger tube [J]. Eng. Fail. Anal., 2012, 26: 332
doi: 10.1016/j.engfailanal.2012.07.018
9 Yan Y M, Lin L Y, Zhu X L. Effect of residual stress on corrosion resistance of copper tube BFe30-1-1 in 3.5%NaCl [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 59
9 严宇民, 林乐耘, 朱小龙. 残余应力对BFe30-1-1铜管耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 1994, 14: 59
10 Admiraal L, Ijsseling F P, Kolster B H, et al. Influence of temperature on corrosion product film formation on CuNi10Fe in the low temperature range: part 2: Studies on corrosion product film formation and properties in relation to microstructure and iron content [J]. Br. Corros. J., 1986, 21: 33
doi: 10.1179/000705986798272451
11 Hack H P. Role of the corrosion product film in the corrosion protection Cu-Ni alloys in saltwater [D]. State College: Pennsylvania State University, 1987
12 Zhang Z, Yao L A, Gan F X. Effect of surface film on electrochemical behavior of Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 143
12 张哲, 姚禄安, 甘复兴. 铜镍合金表面膜对其电化学行为的影响 [J]. 中国腐蚀与防护学报, 1987, 7: 143
13 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
13 白苗苗, 白子恒, 蒋立 等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
14 Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
15 Syrett B C, Macdonald D D, Wing S S. Corrosion of copper-nickel alloys in sea water polluted with sulfide and sulfide oxidation products [J]. Corrosion, 1979, 35: 409
doi: 10.5006/0010-9312-35.9.409
16 Wang Y Z, Beccaria A M, Poggi G. The effect of temperature on the corrosion behaviour of a 70/30 Cu-Ni commercial alloy in seawater [J]. Corros. Sci., 1994, 36: 1277
doi: 10.1016/0010-938X(94)90181-3
17 Yang F, Zheng Y G, Yao Z M, et al. Study on erosion-corrosion behavior of Cu-Ni alloy BFe30-1-1 in flowing artificial seawater [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 16
17 杨帆, 郑玉贵, 姚治铭 等. 铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为 [J]. 中国腐蚀与防护学报, 1999, 19: 16
18 Wang J H, Jiang X X, Li S Z. Microstructure and corrosion behavior of 70Cu-30Ni welded pipe [J]. Trans. Nonferrous Met. Soc. China, 1995, 5: 88
19 Macdonald D D, Syrett B C, Wing S S. The corrosion of copper-nickel alloys 706 and 715 in flowing sea water. I-effect of oxygen [J]. Corrosion, 1978, 34: 289
doi: 10.5006/0010-9312-34.9.289
20 Ekerenam O O, Ma A L, Zheng Y G, et al. Evolution of the corrosion product film and its effect on the erosion-corrosion behavior of two commercial 90Cu-10Ni tubes in seawater [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 1148
doi: 10.1007/s40195-018-0745-1
21 Chi C Y, Li N, Xue J J, et al. Electrochemical behavior of B30 Cu-Ni alloy in seawater [J]. Mater. Prot., 2009, 42(8): 19
21 迟长云, 李宁, 薛建军 等. B30铜镍合金在海水中的电化学行为 [J]. 材料保护, 2009, 42(8): 19
22 Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization [J]. Corros. Sci., 2015, 98: 107
doi: 10.1016/j.corsci.2015.05.006
23 Aben T, Tromans D. Anodic polarization behavior of copper in aqueous bromide and bromide/benzotriazole solutions [J]. J. Electrochem. Soc., 1995, 142: 398
doi: 10.1149/1.2044031
24 North R F, Pryor M J. The nature of protective films formed on a Cu-Fe alloy [J]. Corros. Sci., 1969, 9: 509
doi: 10.1016/0010-938X(69)90021-3
25 Feng L, Wang Y H, Zhong L, et al. Influence of short-term storage on corrosion behavior of copper [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 375
25 冯林, 王燕华, 钟莲 等. 短期贮存对金属铜腐蚀电化学行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 375
26 North R F, Pryor M J. The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys [J]. Corros. Sci., 1970, 10: 297
doi: 10.1016/S0010-938X(70)80022-1
27 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
27 王家明, 杨昊东, 杜敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
28 Wang G Y, Wang H J, Li X L, et al. Corrosion and Protection of Natural Environment [M]. Beijing: Chemical Industry Press, 1997
28 王光雍, 王海江, 李兴濂 等. 自然环境的腐蚀与防护: 大气·海水·土壤 [M]. 北京: 化学工业出版社, 1997
29 Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
29 丁国清, 李向阳, 张波 等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
30 Fang Z G, Liu B. Corrosion and Protection of Submarine Structures [M]. Beijing: National Defense Industry Press, 2017
30 方志刚, 刘斌. 潜艇结构腐蚀防护 [M]. 北京: 国防工业出版社, 2017
31 Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
doi: 10.1016/j.corsci.2006.07.003
32 Kato C, Pickering H W. A rotating disk study of the corrosion behavior of Cu-9.4Ni-1.7Fe alloy in air-saturated aqueous NaCl solution [J]. J. Electrochem. Soc., 1984, 131: 1219
doi: 10.1149/1.2115791
33 Chauhan P K, Gadiyar H S. An xps study of the corrosion of Cu-10Ni alloy in unpolluted and polluted sea-water; the effect of FeSO4 addition [J]. Corros. Sci., 1985, 25: 55
doi: 10.1016/0010-938X(85)90088-5
34 Chang Q P, Chen Y Y, Song F, et al. Corrosion properties of B30 Cu-Ni alloy and 316L stainless steel in a heat pump system [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 544
34 常钦鹏, 陈友媛, 宋芳 等. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2014, 34: 544
35 Badaw W A, Ismail K M, Fathi A M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions [J]. Electrochim. Acta, 2005, 50: 3603
doi: 10.1016/j.electacta.2004.12.030
[1] 高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[2] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[3] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[4] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[5] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[6] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[7] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[8] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[9] 周开河,方云辉,徐孝忠,江炯,郭小平,刘栓,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响II—温度和溶解氧浓度[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[10] 刘栓, 赵霞, 陈长伟, 侯保荣, 陈建敏. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 393-399.
[11] 陈宇, 陈旭, 刘彤, 王冠夫, 王彦亮. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[12] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[13] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[14] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[15] 徐鸿, 袁军, 朱忠亮, 张乾, 张乃强. 铁素体-马氏体P92钢在600 ℃/25 MPa超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2014, 34(2): 119-124.