Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 966-972          DOI: 10.11902/1005.4537.2021.339
  研究报告 本期目录 | 过刊浏览 |
铝合金超双疏表面的制备及其耐蚀性研究
李育桥, 司伟婷, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266100
Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance
LI Yuqiao, SI Weiting, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
Yuqiao LI, Weiting SI, Rongjie GAO. Preparation of Superamphiphobic Surface on Al-alloy and Its Corrosion Resistance[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 966-972.

全文: PDF(4082 KB)   HTML
摘要: 

采用盐溶液刻蚀和水浴处理的方法,结合氟硅烷的表面修饰,在5083铝合金基体上制备出了超双疏表面。采用场发射扫描电子显微镜 (FE-SEM)、X射线衍射 (XRD)、X射线光电子能谱 (XPS)、接触角测量和电化学测试等方法研究了超双疏铝合金表面的微观形貌、化学成分、疏水疏油性和耐蚀性。结果表明,水和乙二醇在该表面上的接触角分别为 158°和154.3°,展现出良好的超双疏性能;与基体相比,超双疏试样的腐蚀电位明显正移,腐蚀电流密度由4.016×10-6 A·cm-2下降至1.531×10-7 A·cm-2;在3.5% (质量分数) NaCl溶液中浸泡5 d后,超双疏试样的电荷转移电阻仍明显高于基体,提高了5083铝合金基体的耐蚀性。

关键词 铝合金刻蚀超双疏表面耐蚀性    
Abstract

Superamphiphobic surface film was prepared on 5083 Al-alloy substrate by using chemical etching and then finishing in an ethanol solution of perfluorodecyl triethoxysilane. Its microscopic morphology, chemical composition, superamphiphobicity and corrosion resistance were characterized by means of field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle measurements and electrochemical tests. The results showed that the contact angles of water and ethylene glycol on the surface were 158° and 154.3°, respectively, exhibiting good superamphiphobicity. In comparison with the bare alloy, the free corrosion potential of the 5083 Al-alloy with superamphiphobic surface film exhibited significantly positive shift, while the corrosion current decreased from 4.016×10-6 A·cm-2 to 1.531×10-7 A·cm-2; after immersing in 3.5% (mass fraction) NaCl solution for 5 d, the charge transfer resistance of the alloy with superamphiphobic surface film was still significantly higher than that of the bare alloy, it follows that the superamphiphobic surface finishing can enhance the corrosion resistance of 5083 Al-alloy substrate.

Key wordsAl-alloy    chemical etching    superamphiphobic surface    anti-corrosion
收稿日期: 2021-11-26     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金山东省联合基金(U1706221)
作者简介: 李育桥,女,1996年生,硕士生
图1  超双疏表面的制备流程
图2  不同处理方法下试样的表面形貌
图3  水滴和乙二醇在基体和超双疏表面的光学图像
图4  同处理方式后试样表面的 XRD 图谱
图5  硅烷修饰前试样的XPS谱图
图6  氟硅烷修饰后试样的XPS图谱
图7  基体和超双疏试样的动电位极化曲线
SampleIcorrA·cm-2EcorrVβamV·dec-1βcmV·dec-1IE %
Bare4.016×10-6-0.8829227.17251.38---
Superamphiphobic1.531×10-7-0.4665144.82183.7996.29
表1  动电位极化曲线拟合参数
图8  基体和不同浸泡时间下超双疏试样的Nyquist图
图9  基体和超双疏试样的等效电路图
SampleCPEfF·cm-2RfkΩ·cm2RctkΩ·cm2CdlF·cm-2RpkΩ·cm2
Bare1.96×10-50.01213.403.29×10-613.41
SA (0 d)9.18×10-725.95444.802.17×10-8470.75
SA (1 d)1.19×10-62.79199.702.49×10-8202.49
SA (2 d)8.90×10-69.8029.502.93×10-639.30
SA (3 d)1.39×10-54.5371.263.19×10-575.79
SA (4 d)1.90×10-50.2178.641.23×10-778.85
SA (5 d)1.06×10-513.9059.021.32×10-572.92
SA (6 d)3.57×10-56.154.014.57×10-410.16
表2  基体和不同浸泡时间下超双疏试样的电路拟合参数
[1] Liu H, Huang J Y, Li F Y, et al. Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning [J]. Cellulose, 2017, 24: 1129
doi: 10.1007/s10570-016-1177-6
[2] Xiang T F, Chen D P, Lv Z, et al. Robust superhydrophobic coating with superior corrosion resistance [J]. J. Alloy. Compd., 2019, 798: 320
doi: 10.1016/j.jallcom.2019.05.187
[3] Gandel D S, Easton M A, Gibson M A, et al. The influence of zirconium additions on the corrosion of magnesium [J]. Corros. Sci., 2014, 81: 27
doi: 10.1016/j.corsci.2013.11.051
[4] Zhang B B, Xu W C, Zhu Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection [J]. Corros. Sci., 2019, 158: 108083
doi: 10.1016/j.corsci.2019.06.031
[5] George J E, Rodrigues V R M, Mathur D, et al. Self-cleaning superhydrophobic surfaces with underwater superaerophobicity [J]. Mater. Des., 2016, 100: 8
doi: 10.1016/j.matdes.2016.03.104
[6] Huang P, Gao R J, Liu W B, et al. Fabrication of superamphiphobic surface for nickel-plate on pipeline steel by salt solution etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 96
[6] (黄鹏, 高荣杰, 刘文斌 等. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 96)
[7] Guo C L, Ding H, Xie M X, et al. Multifunctional superamphiphobic fluorinated silica with a core-shell structure for anti-fouling and anti-corrosion applications [J]. Colloids Surf., 2021, 615A: 126155
[8] Wei J F, Li B C, Jing L Y, et al. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating [J]. Chem. Eng. J., 2020, 390: 124562
doi: 10.1016/j.cej.2020.124562
[9] Xu Z Y, Qi H B, Cheng Y Y, et al. Nanocoating: anti-icing superamphiphobic surface on 1060 aluminum alloy mesh [J]. Appl. Surf. Sci., 2019, 498: 143827
doi: 10.1016/j.apsusc.2019.143827
[10] Ghaffari S, Aliofkhazraei M, Barati Darband G, et al. Review of superoleophobic surfaces: evaluation, fabrication methods, and industrial applications [J]. Surf. Interfaces, 2019, 17: 100340
[11] Teisala H, Butt H J. Hierarchical structures for superhydrophobic and superoleophobic surfaces [J]. Langmuir, 2019, 35: 10689
doi: 10.1021/acs.langmuir.8b03088 pmid: 30463408
[12] Lian Z X, Xu J K, Yu P, et al. Oil-repellent and corrosion resistance properties of superhydrophobic and superoleophobic aluminum alloy surfaces based on nanosecond laser-textured treatment [J]. Met. Mater. Int., 2020, 26: 1603
doi: 10.1007/s12540-019-00382-4
[13] Zhang D J, Wu G Q, Li H, et al. Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion [J]. Chem. Eng. J., 2021, 406: 126753
doi: 10.1016/j.cej.2020.126753
[14] Chao J Q, Feng J K, Chen F Z, et al. Fabrication of superamphiphobic surfaces with controllable oil adhesion in air [J]. Colloids Surf., 2021, 610A: 125708
[15] Zhang B B, Zeng Y X, Wang J, et al. Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency [J]. Mater. Des., 2020, 188: 108479
doi: 10.1016/j.matdes.2020.108479
[16] Lv Z X, Yu S R, Song K X, et al. A two-step method fabricating a hierarchical leaf-like superamphiphobic PTFE/CuO coating on 6061Al [J]. Prog. Org. Coat., 2020, 147: 105723
[17] Zhong Y X, Hu J, Zhang Y F, et al. The one-step electroposition of superhydrophobic surface on AZ31 magnesium alloy and its time-dependence corrosion resistance in NaCl solution [J]. Appl. Surf. Sci., 2018, 427: 1193
doi: 10.1016/j.apsusc.2017.08.103
[18] Tuo Y J, Zhang H F, Chen L, et al. Fabrication of superamphiphobic surface with hierarchical structures on metal substrate [J]. Colloids Surf., 2021, 612A: 125983
[19] Zhang B B, Zhao X, Li Y T, et al. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach [J]. RSC Adv., 2016, 6: 35455
doi: 10.1039/C6RA05484F
[20] Song J L, Huang S, Hu K, et al. Fabrication of superoleophobic surfaces on Al substrates [J]. J. Mater. Chem., 2013, 1A: 14783
[21] Geiculescu A C, Strange T F. A microstructural investigation of low-temperature crystalline alumina films grown on aluminum [J]. Thin Solid Films, 2003, 426: 160
doi: 10.1016/S0040-6090(02)01293-2
[22] Kloprogge J T, Duong L V, Wood B J, et al. XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-) boehmite [J]. J. Colloid Interface Sci., 2006, 296: 572
doi: 10.1016/j.jcis.2005.09.054
[23] Saleema N, Farzaneh M, Paynter R W, et al. Prevention of ice accretion on aluminum surfaces by enhancing their hydrophobic properties [J]. J. Adhes. Sci. Technol., 2011, 25: 27
doi: 10.1163/016942410X508064
[24] Deng R, Hu Y M, Wang L, et al. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces [J]. Appl. Surf. Sci., 2017, 402: 301
doi: 10.1016/j.apsusc.2017.01.091
[25] Laoharojanaphand P, Lin T J, Stoffer J O. Glow discharge polymerization of reactive functional silanes on poly (methyl methacrylate) [J]. J. Appl. Polym. Sci., 1990, 40: 369
doi: 10.1002/app.1990.070400306
[26] Hu J M, Liu L, Zhang J Q, et al. Electrodeposition of silane films on aluminum alloys for corrosion protection [J]. Prog. Org. Coat., 2007, 58: 265
doi: 10.1016/j.porgcoat.2006.11.008
[27] Li X W, Zhang Q X, Guo Z, et al. Low-cost and large-scale fabrication of a superhydrophobic 5052 aluminum alloy surface with enhanced corrosion resistance [J]. RSC Adv., 2015, 5: 29639
doi: 10.1039/C5RA00324E
[28] Ren J D, Gao R J, Zhang Y, et al. Fabrication of amphiphobic surface of pipeline steel by acid etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 233
[28] (任继栋, 高荣杰, 张宇 等. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 233)
[1] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[3] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[4] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[5] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[6] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[7] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[8] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[9] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[10] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[11] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[12] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[13] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[14] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[15] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.