Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 779-784    DOI: 10.11902/1005.4537.2021.244
  研究报告 本期目录 | 过刊浏览 |
pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响
李柯萱1, 宋龙飞2,3(), 李晓荣4
1.宁波工程学院材料与化学工程学院 宁波 315211
2.广州大学化学化工学院 广州 510006
3.北京科技大学新材料技术研究院 北京 100083
4.天津大港油田集团工程建设有限责任公司 天津 300272
Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions
LI Kexuan1, SONG Longfei2,3(), LI Xiaorong4
1.School of Materials and Chemical Engineering, Ningbo University of Engineering, Ningbo 315211, China
2.School of Chemistry and Chemical Engineering,Guangzhou University, Guangzhou 510006, China
3.Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
4.Dagang Oilfield, Tianjin Construction Group Company Limited, Tianjin 300272, China
全文: PDF(5148 KB)   HTML
摘要: 

通过动电位极化曲线、电化学阻抗图谱、Mott-Schottky曲线和慢应变速率拉伸实验研究了pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响。结果表明,随pH值升高,X100管线钢表面膜厚度与致密性提高,点蚀电位提高;高pH-SCC敏感性降低。

关键词 X100管线钢应力腐蚀pH值表面    
Abstract

The effect of pH value on the electrochemical corrosion and stress corrosion of X100 pipeline steel in CO32-/HCO3- containing solutions were studied by means of measurements of potentiodynamic polarization curve, AC impedance spectrum and Mott-Schottky curve, as well as slow strain rate tensile test. The results showed that with the increasing pH value, the thickness and compactness of the formed passive film and the pitting potential of X100 pipeline steel increase, while its SCC sensitivity reduces to certain extent.

Key wordsX100 pipeline steel    stress corrosion    pH value    surface
收稿日期: 2021-09-18     
ZTFLH:  TG174  
基金资助:宁波工程学院科研启动基金
通讯作者: 宋龙飞     E-mail: songlongfei@gzhu.edu.cn
Corresponding author: SONG Longfei     E-mail: songlongfei@gzhu.edu.cn
作者简介: 李柯萱,女,1987年生,讲师,博士生

引用本文:

李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
Kexuan LI, Longfei SONG, Xiaorong LI. Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 779-784.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.244      或      https://www.jcscp.org/CN/Y2022/V42/I5/779

ProportionNaHCO3Na2CO3pH
1 mol/L0.1508.55
2 mol/L0.10.059.62
3 mol/L0.050.110.53
4 mol/L00.1511.58
表1  NaHCO3/Na2CO3缓冲液的配比与pH值
图1  慢应变速率拉伸实验试样尺寸
图2  X100管线钢在不同pH的CO32-/HCO3-溶液中的快慢速扫描动电位极化曲线
图3  X100管线钢快慢速扫描极化曲线的自腐蚀电位
图4  X100管线钢在不同pH的CO32-/HCO3-溶液中的电化学测试曲线
图5  X100管线钢在不同pH的溶液中的Mott-Schottky曲线
图6  pH对X100管线钢在CO32-/HCO3-溶液中表面膜层密度和厚度的影响
图7  X100管线钢在不同pH的CO32-/HCO3-溶液中的应力-应变曲线及应力腐蚀敏感性
图8  X100管线钢慢应变速率拉伸测试后的断口形貌
1 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
1 余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
2 Zhu L X, Jia H D, Luo J H, et al. Effect of applied potential on stress corrosion behavior of X80 pipeline steel and its weld joint in a simulated liquor of soil at Lunnan area of Xinjiang [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 325
2 朱丽霞, 贾海东, 罗金恒 等. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 325
3 Wang X H, Yang Y, Chen Y C, et al. Effect of alternating current on corrosion behavior of X100 pipeline steel in a simulated solution for soil medium at Korla district [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 259
3 王新华, 杨永, 陈迎春 等. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 259
4 Xu X X, Cheng H L, Wu W, et al. Stress corrosion cracking behavior and mechanism of Fe-Mn-Al-C-Ni high specific strength steel in the marine atmospheric environment [J]. Corros. Sci., 2021, 191: 109760
doi: 10.1016/j.corsci.2021.109760
5 Song L F, Liu Z Y, Li X G, et al. Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/ bicarbonate solution [J]. Constr. Build. Mater., 2020, 263: 120124
doi: 10.1016/j.conbuildmat.2020.120124
6 Li Y, Liu Z Y, Fan E D, et al. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Res. Technol., 2021, 64: 141
7 Fan L, Li X G, Du C W, et al. Electrochemical behavior of passive films formed on X80 pipeline steel in various concentrated NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 322
7 范林, 李晓刚, 杜翠薇 等. X80管线钢钝化膜在各种高浓度NaHCO3溶液中的电化学行为 [J]. 中国腐蚀与防护学报, 2012, 32: 322
8 Fan L, Du C W, Liu Z Y, et al. Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate [J]. Int. J. Miner. Metall. Mater., 2013, 20: 645
doi: 10.1007/s12613-013-0778-4
9 Huang W H, Yen H W, Lee Y L. Corrosion behavior and surface analysis of 690 MPa-grade offshore steels in chloride media [J]. J. Mater. Res. Technol., 2019, 8: 1476
doi: 10.1016/j.jmrt.2018.11.002
10 Williamson J, Isgor O B. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar [J]. Corros. Sci., 2016, 106: 82
doi: 10.1016/j.corsci.2016.01.027
11 Seifert H P, Ritter S. The influence of ppb levels of chloride impurities on the strain-induced corrosion cracking and corrosion fatigue crack growth behavior of low-alloy steels under simulated boiling water reactor conditions [J]. Corros. Sci., 2016, 108: 148
doi: 10.1016/j.corsci.2016.03.010
12 Gadala I M, Alfantazi A. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky [J]. Appl. Surf. Sci., 2015, 357: 356
doi: 10.1016/j.apsusc.2015.09.029
13 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
doi: 10.1016/j.apsusc.2016.11.046
14 Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
14 冉斗, 孟惠民, 刘星 等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
15 Sun B Z, Liu Z Y, He Y D, et al. A new study for healing pitting defects of 316L stainless steel based on microarc technology [J]. Corros. Sci., 2021, 187: 109505
doi: 10.1016/j.corsci.2021.109505
16 Cui L Y, Liu Z Y, Xu D K, et al. The study of microbiologically influenced corrosion of 2205 duplex stainless steel based on high-resolution characterization [J]. Corros. Sci., 2020, 174: 108842
doi: 10.1016/j.corsci.2020.108842
17 Liu Z Y, Lu L, Huang Y Z, et al. Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water [J]. Corrosion, 2014, 70: 678
doi: 10.5006/1153
18 Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni (Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
doi: 10.1016/j.corsci.2020.109176
19 Cheng Y F. Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines [J]. Electrochim. Acta, 2007, 52: 2661
doi: 10.1016/j.electacta.2006.09.024
20 Fu A Q, Cheng Y F. Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC [J]. Corros, Sci., 2010, 52: 2511
21 Liu Z Y, Hao W K, Wu W, et al. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer [J]. Corros. Sci., 2019, 148: 388
doi: 10.1016/j.corsci.2018.12.029
[1] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[2] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[3] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[4] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[5] 蔡建敏, 关蕾, 李雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[6] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[7] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[8] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[9] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[10] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[11] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[12] 王佳, 刘晓勇, 高灵清, 查小琴, 罗先甫, 张文利, 张恒坤. α型Ti70合金的吸氢行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[13] 王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
[14] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[15] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.