Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 785-790    DOI: 10.11902/1005.4537.2021.262
  研究报告 本期目录 | 过刊浏览 |
H2S/CO2对J55钢腐蚀的影响机制
赵国仙1, 王映超1(), 张思琦1, 宋洋2
1.西安石油大学材料科学与工程学院 西安 710065
2.西安摩尔石油工程实验室股份有限公司 西安 710065
Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution
ZHAO Guoxian1, WANG Yingchao1(), ZHANG Siqi1, SONG Yang2
1.School of Material Science and Technology, Xi'an Shiyou University, Xi'an 710065, China
2.Xi'an Maurer Petroleum Engineering Laboratory, Co. Ltd., Xi'an 710065, China
全文: PDF(3228 KB)   HTML
摘要: 

通过浸泡腐蚀实验与高温高压电化学测试,研究了J55钢在1.0 MPa CO2、0.3 MPa H2S及1.0 MPa CO2+0.3 MPa H2S气体组分下的腐蚀特征,并采用XRD、SEM和EDS分析腐蚀产物膜组成与形貌。结果显示,溶液中气体组分为H2S及CO2+H2S下的腐蚀速率相近,其表面产物为FeS。在只含H2S气体时,J55钢的表面FeS产物膜致密;而在CO2氛围下J55钢的腐蚀速率最高,其产物为疏松、覆盖率较低的FeCO3。高温高压原位电化学测试显示,不含腐蚀气体时溶液介质对J55钢的腐蚀表现为阴极控制;加入H2S使腐蚀转为阳极控制,腐蚀电位明显升高;而CO2的加入能强化阴极控制效果,同时降低腐蚀电位;溶液中CO2与H2S共存时,CO2使FeS的成膜电位增加。EIS图显示,J55钢在不含腐蚀性气体时极化电阻最大,仅含CO2时极化电阻最小,仅含H2S时出现高频容抗弧与低频容抗弧两个时间常数。

关键词 J55钢H2S腐蚀CO2腐蚀高温高压电化学    
Abstract

The corrosion characteristics of J55 steel in an artificial solution charged with 1.0 MPa CO2, 0.3 MPa H2S and 1.0 MPa CO2+0.3 MPa H2S respectively, in a high-temperature and high-pressure autoclave were studied via immersion corrosion test and electrochemical test, while the tested steels were characterized by means of XRD, SEM and EDS. The results show that in solutions charged with H2S and CO2+H2S the J55 steel presents the similar corrosion rate, and in the solution charged with CO2 the J55 steel exhibits the highest corrosion rate, accordingly, the formed corrosion product is the loose FeCO3 with low coverage. Comparatively, the corrosion product formed in the H2S charged solution is compact FeS, and the FeS generated in the CO2+H2S charged electrolyte is thinner and less compact. The in-situ electrochemical test at high temperature and high pressure showed that the corrosion process of J55 steel in the plain solution without charge of corrosive gas was controlled by the cathodic reaction. The charging H2S could result in the transformation of the controlled step from the cathodic reaction into anodic reaction, correspondingly, the corrosion potential increased significantly. The charging CO2 could strengthen the cathodic reaction control effect and reduce the corrosion potential. When CO2 and H2S coexisted, CO2 could promote the increase of the formation potential of FeS film. EIS diagram shows that the polarization resistance of J55 steel is the largest in the plain solution without corrosive gas, while the polarization resistance is the smallest in the solution charged with CO2 only, and two time-constants of high frequency capacitive arc and low frequency capacitive arc emerged for the J55 steel only in the H2S charged solution.

Key wordsJ55 Steel    H2S corrosion    CO2corrosion    high temperature and high pressure electrochemistry
收稿日期: 2021-09-27     
ZTFLH:  TG174  
通讯作者: 王映超     E-mail: 879795654@qq.com
Corresponding author: WANG Yingchao     E-mail: 879795654@qq.com
作者简介: 赵国仙,女,1968年生,博士,教授

引用本文:

赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
Guoxian ZHAO, Yingchao WANG, Siqi ZHANG, Yang SONG. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 785-790.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.262      或      https://www.jcscp.org/CN/Y2022/V42/I5/785

图1  高温高压釜模拟腐蚀实验的结果
图2  J55钢在不同气体组分下的腐蚀形貌及腐蚀产物EDS分析
图3  在3种模拟环境中J55钢的腐蚀产物XRD图谱
图4  在4种实验环境中J55钢的极化曲线
ConditionEcorr / mVI0 / μA·cm-2ba / mVbc / mV
1.3 MPa N2-657.84.30832.3693.60

1.0 MPa CO2+

0.3 MPa N2

-772.4119.023.03255.6

0.3 MPa H2S+

1.0 MPa N2

-406.528.8873.9452.53

1.0 MPa CO2+

0.3 MPa H2S

-382.616.5243.9195.28
表1  J55钢极化曲线Tafel拟合结果
图5  在4种实验环境中中J55钢的电化学阻抗图谱及等效电路
图6  在4种实验环境中J55钢的Bode图
1 Li C Y, Zhuang H Z, Mao X P. Development and application study of J55 oil casing hot rolling steel strip [J]. Eng. Technol. Res., 2007, (3): 1
1 李春艳, 庄汉洲, 毛新平. J55钢级石油套管用热轧钢带开发及应用研究 [J]. 冶金丛刊, 2007, (3): 1
2 Mu L J, Zhang J, Zhao W Z, et al. Corrosion behavior of J55 steel in NaHCO3 solution [J]. Mater. Mech. Eng., 2010, 34(8): 15
2 慕立俊, 张军, 赵文轸 等. J55钢在NaHCO3溶液中的腐蚀行为 [J]. 机械工程材料, 2010, 34(8): 15
3 Wang J G, Meng L H, Fan Z Z, et al. Study on CO2 corrosion of steel N80 and steel J55 in the downhole [J]. Contemp. Chem. Ind., 2019, 48: 929
3 王继刚, 孟丽慧, 范振忠 等. CO2对井下N80钢和J55钢的腐蚀研究 [J]. 当代化工, 2019, 48: 929
4 Svenningsen G, Palencsár A, Kvarekvå J. Investigation of iron sulfide surface layer growth in aqueous H2S/CO2 environments [A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009
5 Banaś J, Lelek-Borkowska U, Mazurkiewicz B, et al. Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water [J]. Electrochim. Acta, 2007, 52: 5704
doi: 10.1016/j.electacta.2007.01.086
6 Bai H T, Wang Y Q, Ma Y, et al. Pitting corrosion and microstructure of J55 carbon steel exposed to CO₂/Crude Oil/Brine solution under 2-15 MPa at 30-80 ℃ [J]. Materials, 2018, 11: 2374
doi: 10.3390/ma11122374
7 Zhao J S, Ju Y J, Tang M R, et al. Experimental study on the corrosion behavior of produced fluid on J55 steel during CO2 flooding [J]. Key Eng. Mater., 2018, 773: 179
doi: 10.4028/www.scientific.net/KEM.773.179
8 Santos B A F, Souza R C, Serenario M E D, et al. The effect of different brines and temperatures on the competitive degradation mechanisms of CO2 and H2S in API X65 carbon steel [J]. J. Nat. Gas Sci. Eng., 2020, 80: 103405
doi: 10.1016/j.jngse.2020.103405
9 Sui P F, Sun J B, Hua Y, et al. Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S [J]. Int. J. Greenhouse Gas Control, 2018, 73: 60
doi: 10.1016/j.ijggc.2018.04.003
10 Hu L H, Chang W, Yu X Y, et al. Effect of partial pressure of CO2 on corrosion of carbon steel subsea pipeline in CO2/H2S environment [J]. Surf. Technol., 2016, 45(5): 56
10 胡丽华, 常炜, 余晓毅 等. CO2分压对碳钢海底管道CO2/H2S腐蚀的影响 [J]. 表面技术, 2016, 45(5): 56
11 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
11 葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
12 Xie J, Gao C Z, Shan X K, et al. Study on CO2-H2S corrosion behavior and mechanism of X65 steel [J] Pet. New Energy, 2020, 31(4): 13
12 谢俊, 高长征, 单晓琨 等. CO2-H2S对X65钢腐蚀行为研究 [J]. 石油规划设计, 2020, 31(4): 13
13 Wang Y F, Qu C T, Li J L, et al. Corrosion behavior of steel in H2S-CO2-CI- system [J]. Technol. Dev. Chem. Ind., 2020, 49(5): 20
13 王艳飞, 屈撑囤, 李金灵 等. 钢在H2S-CO2-Cl-体系中的腐蚀行为研究 [J]. 化工技术与开发, 2020, 49(5): 20
14 Zhang G A, Lu M X, Wu Y S. Effect of HCO3 - concentration on CO2 corrosion in gas and oil fields [J]. J. Electrochem., 2005, 11: 387
14 张国安, 路民旭, 吴荫顺. HCO3 -浓度对油气田中CO2腐蚀的影响 [J]. 电化学, 2005, 11: 387
15 Wang F, Li J, Li J L, et al. Corrosion behavior of metallic pipes in CO2/H2S environment [J]. Hot Work. Technol., 2021, 50(4): 1
15 王帆, 李娟, 李金灵 等. 金属管道在CO2/H2S环境中的腐蚀行为 [J]. 热加工工艺, 2021, 50(4): 1
16 Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: effect of CO2 on iron dissolution reaction [J]. Corros. Sci., 2017, 129: 146
doi: 10.1016/j.corsci.2017.10.005
17 Li X, Chen X, Song W Q, et al. Effect of pH value on microbial corrosion behavior of X70 steel in a sea mud extract simulated solution [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 565
17 李鑫, 陈旭, 宋武琦 等. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 565
18 Zhang J, Yuan H, Zhao G X, et al. Corrosion resistance of 028 nickel-based alloy in ultra high temperature containing CO2 environment [J]. Trans. Mater. Heat Treat., 2020, 41(6): 84
18 张钧, 袁和, 赵国仙 等. 028镍基合金在超高温含CO2环境中的耐腐蚀性能 [J]. 材料热处理学报, 2020, 41(6): 84
19 Sun Y, Zhang W X, Xu C X, et al. Effects of solution treatment on microstructure and corrosion properties of Mg-3.0Zn-0.6Y-0.5Zr-0.3Ca biological magnesium alloy [J]. Trans. Mater. Heat Treat., 2017, 38(9): 24
19 孙毅, 张文鑫, 许春香 等. 固溶处理对Mg-Zn-Y-Zr-Ca生物镁合金组织及腐蚀性能的影响 [J]. 材料热处理学报, 2017, 38(9): 24
20 Gu T, Tang D Z, Wang Z, et al. Effect of typical ions on the corrosion behavior of carbon steel in CO2 environment [J]. Nat. Gas Ind., 2019, 39(7): 106
20 谷坛, 唐德志, 王竹 等. 典型离子对碳钢CO2腐蚀的影响 [J]. 天然气工业, 2019, 39(7): 106
21 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49: 4308
doi: 10.1016/j.corsci.2007.06.006
22 Zhang L, Guo D P, Lu M X. Effect of Cl- content on CO2 corrosion of J55 steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 64
22 张雷, 国大鹏, 路民旭. Cl-含量对J55钢CO2腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 64
23 Ituen E, Akaranta O, James A. Influence of clomipramine-based blends on corrosion behaviour of J55 steel in simulated oilfield acidizing solution [J]. J. Bio-Tribo-Corros., 2017, 3: 23
[1] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[7] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[8] 王凤平,刘岚,丁言伟,胡隋军,刘照斌,刘丹,张丽. 油气田H2S腐蚀体系模拟方法探究[J]. 中国腐蚀与防护学报, 2015, 35(3): 251-256.
[9] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[10] 赵景茂 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理
[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[11] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[12] 赵景茂,李俊. 含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
[13] 侯赞,周庆军,王起江,张忠铧,齐慧滨,王俊. 13Cr系列不锈钢在模拟井下介质中的CO2腐蚀研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 300-305.
[14] 王彬;张静;杜敏. 咪唑啉类缓蚀剂对含饱和CO2的模拟油田采出液中Q235-A钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2010, 30(1): 16-20.
[15] 俞芳 高克玮 路民旭. 流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价[J]. 中国腐蚀与防护学报, 2009, 29(6): 401-404.