Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 687-692    DOI: 10.11902/1005.4537.2021.208
  研究报告 本期目录 | 过刊浏览 |
预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响
胡蕴媛1, 钱伟2, 花银群1,2(), 叶云霞2, 蔡杰2, 戴峰泽2
1.江苏大学新材料研究院 镇江 212013
2.江苏大学机械工程学院 镇江 212013
Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2
HU Yunyuan1, QIAN Wei2, HUA Yinqun1,2(), YE Yunxia2, CAI Jie2, DAI Fengze2
1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2.School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
全文: PDF(10488 KB)   HTML
摘要: 

对在900、1000、1100、1200和1300 ℃下预腐蚀0.5 h的Gd2Zr2O7陶瓷进行了1250 ℃下3 h的CaO-MgO-Al2O3-SiO2 (CMAS) 热腐蚀实验,利用XRD、SEM以及EDS等手段表征了腐蚀产物和腐蚀深度。实验表明,在1100 ℃下预腐蚀0.5 h之后的Gd2Zr2O7抗CMAS性能有效提高。1250 ℃下CMAS腐蚀3 h后,腐蚀深度为39.46 μm;CMAS腐蚀10 h后,腐蚀深度为70.49 μm。高温下,预腐蚀后的Gd2Zr2O7时与熔融的CMAS相互反应,形成致密的富磷灰石相 (Ca2Gd8(SiO4)6O2) 上反应层,能够有效抑制CMAS的进一步渗透。

关键词 热障涂层Gd2Zr2O7Al2O3-SiO2(CMAS)磷灰石相热腐蚀    
Abstract

The Gd2Zr2O7 ceramics, as a candidate material for making thermal barrier coating, was subjected firstly to pre-corrosion beneath deposits of CaO-MgO-Al2O3-SiO2 (CMAS) powders in temperature range of 900-1300 ℃ for 0.5 h, afterwards, the pre-corroded Gd2Zr2O7 ceramics were subjected to CMAS induced hot corrosion at 1250 ℃ for 3 h. Then the corroded ceramics were characterized by means of XRD, SEM and EDS in terms of the composition and phase constituent of corrosion products and cross-sectional morphology of the corroded ceramics. Results reveal that after being pre-corroded beneath CMAS deposits at 1100 ℃, the ceramics present better corrosion resistance rather than the blank ceramics during the post-corrosion beneath CMAS deposits at 1250 ℃. Which presented corrosion depth of 39.46 and 70.49 μm after CMAS induced hot corrosion at 1250 ℃ for 3 and 10 h respectively. It is proposed that during the pre-corrosion, the Gd2Zr2O7 could react with the melt CMAS at 1250 ℃ to form a dense top reaction scale riched in apatite (Ca2Gd8(SiO4)6O2), which can effectively inhibit the further penetration of CMAS during the post corrosion process induced by CMAS deposits.

Key wordsthermal barrier coating    Gd2Zr2O7    CaO-MgO-Al2O3-SiO2 (CMAS)    apatite    hot corrosion
收稿日期: 2021-08-23     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51641102)
通讯作者: 花银群     E-mail: huayq@ujs.edu.cn
Corresponding author: HUA Yinqun     E-mail: huayq@ujs.edu.cn
作者简介: 胡蕴媛,女,1997年生,硕士生

引用本文:

胡蕴媛, 钱伟, 花银群, 叶云霞, 蔡杰, 戴峰泽. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
Yunyuan HU, Wei QIAN, Yinqun HUA, Yunxia YE, Jie CAI, Fengze DAI. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 687-692.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.208      或      https://www.jcscp.org/CN/Y2022/V42/I4/687

图1  Gd2Zr2O7的XRD谱
图2  CMAS粉末的XRD图谱和TG-DSC图谱
图3  不同温度预腐蚀Gd2Zr2O7在1250 ℃下CMAS腐蚀5 h的截面形貌
图4  经不同温度预腐蚀的Gd2Zr2O7在1250 ℃下CMAS腐蚀3 h的反应层深度
图5  上下反应层的 SEM形貌,EDS谱及 Si、Al、Ca的元素分布图
图6  未处理和经1100 ℃/0.5 h预腐蚀的Gd2Zr2O7块体在1250 ℃下CMAS腐蚀不同时间后的截面形貌
1 Han S H, Zhang J J, Li T J. Corrosion behavior and failure prediction of YSZ coatings under CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 708
doi: 10.1007/s11666-020-01141-3
2 Thakare J G, Pandey C, Mahapatra M M, et al. Thermal barrier coatings-a state of the art review [J]. Met. Mater. Int., 2021, 27: 1947
doi: 10.1007/s12540-020-00705-w
3 Zhang S R, Dong H Y, Ma W, et al. Corrosion resistance of air plasma sprayed thermal barrier coating SrZrO3 on superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS) [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 53
3 张珊榕, 董红英, 马文 等. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 53
4 Wang Z P, Fei Y J, Liu Y K. Failure mechanism, improvment method and future development direction of thermal barrier coatings [J]. Surf. Technol., 2021, 50(7): 126
4 王志平, 费宇杰, 刘延宽. 热障涂层失效机理、改进方法及未来发展方向 [J]. 表面技术, 2021, 50(7): 126
5 Krause A R, Garces H F, Dwivedi G, et al. Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings [J]. Acta Mater., 2016, 105: 355
doi: 10.1016/j.actamat.2015.12.044
6 Liu Q M, Huang S Z, He A J. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35: 2814
doi: 10.1016/j.jmst.2019.08.003
7 Pujol G, Ansart F, Bonino J P, et al. Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications [J]. Surf. Coat. Technol., 2013, 237: 71
doi: 10.1016/j.surfcoat.2013.08.055
8 Morelli S, Testa V, Bolelli G, et al. CMAS corrosion of YSZ thermal barrier coatings obtained by different thermal spray processes [J]. J. Eur. Ceram. Soc., 2020, 40: 4084
doi: 10.1016/j.jeurceramsoc.2020.04.058
9 Liu H, Cai J, Zhu J H. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers [J]. Ceram. Int., 2018, 44: 452
doi: 10.1016/j.ceramint.2017.09.197
10 Kumar R, Jordan E, Gell M, et al. CMAS behavior of yttrium aluminum garnet (YAG) and yttria-stabilized zirconia (YSZ) thermal barrier coatings [J]. Surf. Coat. Technol., 2017, 327: 126
doi: 10.1016/j.surfcoat.2017.08.023
11 Ozgurluk Y, Doleker K M, Ahlatci H, et al. Investigation of calcium-magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method [J]. Surf. Coat. Technol., 2021, 411: 126969
doi: 10.1016/j.surfcoat.2021.126969
12 Senturk B S, Garces H F, Ortiz A L, et al. CMAS-resistant plasma sprayed thermal barrier coatings based on Y2O3-stabilized ZrO2 with Al3+ and Ti4+ solute additions [J]. J. Therm. Spray Technol., 2014, 23: 708
doi: 10.1007/s11666-014-0077-2
13 Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
13 姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
14 Kandasamy P, Govindarajan S, Gurusamy S. Volcanic ash infiltration resistance of new-generation thermal barrier coatings at 1150 ℃ [J]. Surf. Coat. Technol., 2020, 401: 126226
doi: 10.1016/j.surfcoat.2020.126226
15 Zhang X F, Zhou K S, Liu M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating [J]. Ceram. Int., 2016, 42: 19349
doi: 10.1016/j.ceramint.2016.09.106
16 Kang Y X, Bai Y, Du G Q, et al. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures [J]. Mater. Lett., 2018, 229: 40
doi: 10.1016/j.matlet.2018.06.066
17 Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
doi: 10.1111/j.1551-2916.2007.02175.x
18 Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
doi: 10.1016/j.jeurceramsoc.2017.03.069
19 Drexler J M, Gledhill A D, Shinoda K, et al. Jet engine coatings for resisting volcanic ash damage [J]. Adv. Mater., 2011, 23: 2419
doi: 10.1002/adma.201004783
20 Schulz U, Braue W. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al2O3-SiO2) and volcanic ash deposits [J]. Surf. Coat. Technol., 2013, 235: 165
doi: 10.1016/j.surfcoat.2013.07.029
21 Ponnilavan V, Aravind A, Ezhilan M, et al. Titanium substitution in Gd2Zr2O7 for thermal barrier coating applications [J]. Ceram. Int., 2019, 45: 16450
doi: 10.1016/j.ceramint.2019.05.176
22 Perrudin F, Rio C, Vidal-Sétif M H, et al. Gadolinium oxide solubility in molten silicate: dissolution mechanism and stability of Ca2Gd8(SiO4)6O2 and Ca3Gd2(Si3O9)2 silicate phases [J]. J. Am. Ceram. Soc., 2017, 37: 2657
[1] 吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[2] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[3] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[4] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[5] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[6] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[7] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[8] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[9] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[10] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[11] 刘光明,刘康生,毛晓飞,万中平,黄健航,于明明,汪元奎. T91钢在KCl+Na2SO4+K2SO4熔融盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 23-28.
[12] 李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[13] 蔡丽丽,马文,李新慧,尹轶川,马伯乐,白玉,王俊,董红英. (Gd0.7Sr0.3)ZrO3.35涂层的CaO-MgO-Al2O3-SiO2(CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[14] 张珊榕,董红英,马文,尹轶川,李新慧,白玉,贾瑞灵. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[15] 杨波,李茂东,刘光明,汪元奎,刘康生,翟伟,黄健航. 超音速喷涂Inconel 625/NiCr合金涂层的热腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(5): 483-488.