Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 693-698    DOI: 10.11902/1005.4537.2021.188
  研究报告 本期目录 | 过刊浏览 |
工业建筑屋面用铝锰合金的腐蚀行为
王嘉琪1(), 李莉1, 刘婷婷2
1.重庆大学城市科技学院 重庆 402167
2.西南大学材料与能源学院 重庆 400715
Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof
WANG Jiaqi1(), LI Li1, LIU Tingting2
1.City College of Science and Technology, Chongqing University, Chongqing 402167, China
2.School of Materials and Energy, Southwest University, Chongqing 400715, China
全文: PDF(7400 KB)   HTML
摘要: 

采用金相显微镜、扫描电镜、电化学工作站和化学浸泡腐蚀等手段,研究了RE含量和冷轧+退火处理对Al-Mn-RE合金显微组织和耐腐蚀性能的影响。结果表明,Al-Mn-xRE合金中可见尺寸不等、形状不规则的共晶相;添加不同含量RE后,共晶硅数量有所增多,长条状共晶组织有所细化并逐渐转变为球状或者短棒状;当RE含量达到0.25%及以上时,合金中共晶组织开始粗化;随着含量增加,Al-Mn-xRE合金的腐蚀电位和孔蚀电位都呈现先正向移动而后负向移动、腐蚀电流密度先减小而后增大趋势;在含量为0.18%时腐蚀电位和孔蚀电位取得最大值,具有最佳的耐腐蚀性能。Al-Mn-0.18RE合金的腐蚀电位和孔蚀电位从高至低顺序都为:均匀化态>冷轧+325 ℃退火态>轧制态>冷轧+475 ℃退火态;随着RE含量的增加,冷轧+325 ℃退火态Al-Mn-xRE合金的腐蚀速率呈现先减小而后增加的趋势,在RE含量为0.18%时取得最小值。轧制后Al-Mn-0.18RE合金的耐腐蚀性能相较于均匀化态有所降低,但后续325 ℃稳定化退火处理可以改善合金的耐蚀性能。

关键词 Al-Mn-RE合金RE含量显微组织电化学腐蚀化学浸泡腐蚀    
Abstract

The effect of RE content and cold rolling plus annealing on the microstructure and corrosion resistance of Al-Mn-RE alloy were studied by means of metallographic microscope, scanning electron microscope and electrochemical workstation. The results show that the eutectic phases with different sizes and irregular shapes can be seen in Al-Mn-xRE alloys. With the addition of different RE content, the amount of Si containing eutectic increases, the long strip-like eutectic structure was refined and gradually transformed into spherical or short rod-like structure. When RE content reaches 0.25% or more, the eutectic structure begins to coarsen. With the increase of RE content, the corrosion potential and pore size of Al-Mn-xRE alloys increase, however, the corrosion potential of Al-Mn-0.18RE alloy shifts positively and then negatively, whilst the corrosion current density decreases first and then increases. In fact, the alloy with 0.18% RE presents the maximum corrosion resistance. The corrosion potential and pitting corrosion potential of the Al-Mn-0.18RE alloys subjected to different treatments may be ranked the following order: homogenization>cold rolling+325 ℃ annealing>rolling>cold rolling +475 ℃ annealing. With the increase of RE content, the corrosion rate of the Al-Mn-xRE alloys subjected to cold rolling and annealing at 325 ℃ decreases first and then increases, and reaches the minimum value when the RE content is 0.18%. The corrosion resistance of the rolled Al-Mn-0.18RE alloy is lower than that of homogenized Al-Mn-0.18RE alloy, but the corrosion resistance can be improved by subsequent stabilization annealing at 325 ℃.

Key wordsAl-Mn-RE alloy    RE content    microstructure    electrochemical corrosion    chemical immersion corrosion
收稿日期: 2021-08-05     
ZTFLH:  TG146.2  
基金资助:重庆市自然科学基金(cstc2020jcyj-bsh0035)
通讯作者: 王嘉琪     E-mail: onebai@tom.com
Corresponding author: WANG Jiaqi     E-mail: onebai@tom.com
作者简介: 王嘉琪,女,1987年生,硕士,讲师

引用本文:

王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
Jiaqi WANG, Li LI, Tingting LIU. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 693-698.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.188      或      https://www.jcscp.org/CN/Y2022/V42/I4/693

图1  均匀化态Al-Mn-xRE合金电解抛光后的显微形貌
图2  均匀化态Al-Mn-xRE合金阳极覆膜后的显微组织
图3  均匀化态Al-Mn-xRE合金的SEM形貌
LocationAlMnFe
A82.347.2510.41
B76.587.5515.87
C75.998.2915.72
表1  均匀化态Al-Mn-xRE合金的能谱分析结果
图4  均匀化态Al-Mn-xRE合金在3.5%NaCl溶液中的极化曲线
Content / %Ecorr vs SCEIcorr / 10-8 A·cm-2Epitting vs SCE
0-8124.63-655
0.05-7603.79-652
0.10-7063.62-638
0.18-6942.45-634
0.25-7113.02-636
0.32-8053.98-644
表2  均匀化态Al-Mn-xRE合金在3.5%NaCl溶液中的极化曲线拟合结果
图5  均匀化态Al-Mn-xRE合金电化学腐蚀后的显微形貌
LocationAlClMnSi
A95.060.130.92---
B91.380.070.775.89
表3  均匀化态Al-Mn-xRE合金电化学腐蚀后的能谱分析结果
图6  不同状态Al-Mn-0.18RE合金在3.5%NaCl溶液中的极化曲线
State of sampleESCE / mVESCE / mV
Homogenization-694-634
Rolling-812-696
Cold rolling+325 ℃ annealing-801-694
Cold rolling+475 ℃ annealing-825-698
表4  不同状态Al-Mn-0.18RE合金在3.5%NaCl溶液中的极化曲线拟合结果
图7  冷轧+325 ℃退火态Al-Mn-xRE合金的腐蚀速率与RE含量的对应关系
1 Ying X J, Zhong J H. Al-Mg-Mn alloy plate using for industrial building roof [J]. China Build. Waterproof., 2014, (15): 12
1 应晓捷, 钟俊浩. 工业建筑屋面用铝镁锰合金板 [J]. 中国建筑防水, 2014, (15): 12
2 Chen M. Optimization of extrusion temperature of new Al-Mg-Zn-Ti aluminum alloy plate for industrial building roof [J]. Hot Work. Technol., 2019, 48(21): 99
2 陈萌. 工业建筑屋面用新型Al-Mg-Zn-Ti铝合金板的挤压温度优化 [J]. 热加工工艺, 2019, 48(21): 99
3 Guo F Q, Duan S W, Wu D T, et al. Effect of retrogression re-aging treatment on corrosion behavior of 7055 Al-Zn-Mg alloy [J]. Mater. Res. Express, 2020, 7: 106523
doi: 10.1088/2053-1591/abc191
4 Zhang X, Yang G H, Wang Z H, et al. Corrosion behavior of Al-Mg-RE alloy wires subjected to different cold drawing deformation [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 432
4 张欣, 杨光恒, 王泽华 等. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 432
5 Coury F G, Botta W J, Bolfarini C, et al. Reassessment of the effects of Ce on quasicrystal formation and microstructural evolution in rapidly solidified Al-Mn alloys [J]. Acta Mater., 2015, 98: 221
doi: 10.1016/j.actamat.2015.07.046
6 Hu T, Yin D F, Yu X X, et al. Evolution of microstructure in Al-Mn alloy with a low ratio of Fe/Si during homogenization [J]. Rare Met. Mater. Eng., 2018, 47: 2631
doi: 10.1016/S1875-5372(18)30200-5
7 Li L, Wu Z L, Xia C D, et al. Effect of homogenization annealing on precipitation behavior and microstructure evolution of AA3003 aluminum alloy with high Mn content [J]. Trans. Mater. Heat Treat., 2018, 39(9): 15
7 李龙, 吴忠亮, 夏承东 等. 均匀化退火对高Mn含量AA3003铝合金析出行为和组织演变的影响 [J]. 材料热处理学报, 2018, 39(9): 15
8 Yan H, Zhang J, Gu X D, et al. Effects of Mn, Ce on the microstructure of Al-Mn alloys [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 925
8 颜寒, 张静, 顾晓栋 等. Mn、Ce含量对Al-Mn合金显微组织的影响 [J]. 特种铸造及有色合金, 2017, 37: 925
9 Fang D R, Li F, Liu F F, et al. Effect of equal channel angular pressing on corrosion resistance of Al-Mg alloy [J]. Appl. Mech. Mater., 2013, 457/458: 3
10 Lin S P, Nie Z R, Huang H, et al. Annealing behavior of a modified 5083 aluminum alloy [J]. Mater. Des., 2010, 31: 1607
doi: 10.1016/j.matdes.2009.09.004
11 Liu Y, Cheng Y F. Characterization of passivity and pitting corrosion of 3003 aluminum alloy in ethylene glycol-water solutions [J]. J. Appl. Electrochem., 2011, 41: 151
doi: 10.1007/s10800-010-0215-6
12 Gui X H, Jiang T, Han N M. Effect of alloy elements on corrosion resistance and tensile properties of Al-Mg aluminum alloys [J]. Mater. Prot., 2018, 51(7): 47
12 贵星卉, 江涛, 韩念梅. 合金元素对Al-Mg合金抗腐蚀性能及拉伸性能的影响 [J]. 材料保护, 2018, 51(7): 47
13 Liu S E, Huang J K, Zhang J X, et al. Microstructure, mechanical performance, and corrosion behavior of electron beam welded thick incoloy 825 joints [J]. J. Mater. Eng. Perform., 2021, 30: 3735
doi: 10.1007/s11665-021-05652-0
14 Zhang M J, Xia W J, Chen D, et al. Influence of hot extrusion on microstructure and properties of As-casted Mg-3.5Al-3.5Ca-0.6Mn alloy [J]. Mater. Mechan. Eng., 2017, 41(5): 32
14 张孟军, 夏伟军, 陈鼎 等. 热挤压对铸态Mg-3.5Al-3.5Ca-0.6Mn合金组织与性能的影响 [J]. 机械工程材料, 2017, 41(5): 32
15 Liu Y, Meng G Z, Cheng Y F. Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions [J]. Electrochim. Acta, 2009, 54: 4155
doi: 10.1016/j.electacta.2009.02.058
16 Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
16 乔及森, 夏宗辉, 刘立博 等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255
17 Niu L, Cheng Y F. Electrochemical characterization of metastable pitting of 3003 aluminum alloy in ethylene glycol-water solution [J]. J. Mater. Sci., 2007, 42: 8613
doi: 10.1007/s10853-007-1841-1
[1] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[2] 张恒康, 黄峰, 徐云峰, 袁玮, 邱耀, 刘静. FeCrMn1.3NiAlx高熵合金显微组织演变及电化学钝化行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[3] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[4] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[5] 王佳, 刘晓勇, 高灵清, 查小琴, 罗先甫, 张文利, 张恒坤. α型Ti70合金的吸氢行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[6] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[7] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[8] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[11] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[12] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[13] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[14] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[15] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.