|
|
深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 |
高浩东1, 崔宇2, 刘莉1, 孟凡帝1( ), 刘叡2, 郑宏鹏1, 王福会1 |
1.沈阳材料科学国家实验室东北大学联合研究分部 沈阳 110819 2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating |
GAO Haodong1, CUI Yu2, LIU Li1, MENG Fandi1( ), LIU Rui2, ZHENG Hongpeng1, WANG Fuhui1 |
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
Haodong GAO,
Yu CUI,
Li LIU,
Fandi MENG,
Rui LIU,
Hongpeng ZHENG,
Fuhui WANG.
Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 39-50.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.034
或
https://www.jcscp.org/CN/Y2022/V42/I1/39
|
1 |
Feng S Z, Li F Q, Li S J. An Introduction to Marine Science [M]. Beijing: Higher Education Press, 1999
|
1 |
冯士筰, 李凤岐, 李少菁. 海洋科学导论 [M]. 北京: 高等教育出版社, 1999
|
2 |
Gao Y B, Li H Q, Chai Y P, et al. The development of deep ocean high technology [J]. Ocean Technol., 2010, 29(3): 119
|
2 |
高艳波, 李慧青, 柴玉萍等. 深海高技术发展现状及趋势 [J]. 海洋技术, 2010, 29(3): 119
|
3 |
Hou B R. The Theory and Application of Marine Corrosion Environment [M]. Beijing: Science Press, 1999
|
3 |
侯保荣. 海洋腐蚀环境理论及其应用 [M]. 北京: 科学出版社, 1999
|
4 |
Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
|
4 |
孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
|
5 |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
|
5 |
栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
|
6 |
Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
|
6 |
师超, 邵亚薇, 熊义等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
|
7 |
Corfias C, Pébère N, Lacabanne C. Characterization of protective coatings by electrochemical impedance spectroscopy and a thermostimulated current method: Influence of the polymer binder [J]. Corros. Sci., 2000, 42: 1337
|
8 |
Zhang J T. Electrochemical investigation on water transport behavior of organic coatings and degradation mechanism of coated-metals [J]. Hangzhou: Zhejiang University, 2005
|
8 |
张金涛. 有机涂层中水传输与涂层金属失效机制的电化学研究 [D]. 杭州: 浙江大学, 2005
|
9 |
Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
|
9 |
曹京宜, 王智峤, 李亮等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
|
10 |
Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behavior of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
|
11 |
Liu J, Li X B, Wang J, et al. Studies of impedance models and water transport behaviours of epoxy coating at hydrostatic pressure of seawater [J]. Prog. Org. Coat., 2013, 76: 1075
|
12 |
Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
|
13 |
Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
|
14 |
Tian W L, Liu L, Meng F D, et al. The failure behavior of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure [J]. Corros. Sci., 2014, 86: 81
|
15 |
Wang Y C, Bierwagen G P. A new acceleration factor for the testing of corrosion protective coatings: Flow-induced coating degradation [J]. J. Coat. Technol. Res., 2009, 6: 429
|
16 |
Wei Y H, Zhang L X, Ke W. Comparison of the degradation behaviour of fusion-bonded epoxy powder coating systems under flowing and static immersion [J]. Corros. Sci., 2006, 48: 1449
|
17 |
Zhou Q X, Wang Y C, Bierwagen G P. Flow accelerated degradation of organic clear coat: The effect of fluid shear [J]. Electrochim. Acta, 2014, 142: 25
|
18 |
Ruzic V, Veidt M, Nešić S. Protective iron carbonate films-Part 1: Mechanical removal in single-phase aqueous flow [J]. Corrosion, 2006, 62: 419
|
19 |
van der Wel G K, Adan O C G. Moisture in organic coatings-a review [J]. Prog. Org. Coat., 1999, 37: 1
|
20 |
Pitarresi G, Scafidi M, Alessi S, et al. Absorption kinetics and swelling stresses in hydrothermally aged epoxies investigated by photoelastic image analysis [J]. Polym. Degrad. Stabil., 2015, 111: 55
|
21 |
Jackson M, Kaushik M, Nazarenko S, et al. Effect of free volume hole-size on fluid ingress of glassy epoxy networks [J]. Polymer, 2011, 52: 4528
|
22 |
Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
|
23 |
Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
|
23 |
曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
|
24 |
Shi C, Shao Y W, Wang Y Q, et al. Influence of submicro-sheet zinc phosphate modified by urea-formaldehyde on the corrosion protection of epoxy coating [J]. Surf. Interfaces, 2019, 18: 100403
|
25 |
Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
|
26 |
Liang P P, Bao H M, Yang J F, et al. Preparation of porous graphene oxide-poly (urea-formaldehyde) hybrid monolith for trypsin immobilization and efficient proteolysis [J]. Carbon, 2016, 97: 25
|
27 |
Zheng H P, Shao Y W, Wang Y Q, et al. Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly (urea-formaldehyde) composites [J]. Corros. Sci., 2017, 123: 267
|
28 |
Nogueira P, Ramírez C, Torres A, et al. Effect of water sorption on the structure and mechanical properties of an epoxy resin system [J]. J. Appl. Polym. Sci., 2001, 80: 71
|
29 |
Gabe D R, Wilcox G D, Gonzalez-Garcia J, et al. The rotating cylinder electrode: its continued development and application [J]. J. Appl. Electrochem., 1998, 28: 759
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|