Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 34-38    DOI: 10.11902/1005.4537.2020.234
  综合评述 本期目录 | 过刊浏览 |
SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展
尹阳阳1, 刘建峰1,2,3(), 缪克基1, 王婷1, 宁锴1, 潘卫国1,2, 袁斌霞1,3, 尹诗斌3,4
1.上海电力大学能源与机械工程学院 上海 200090
2.机械工业清洁发电环保技术重点实验室 上海 200090
3.广西有色金属及特色材料加工重点实验室 有色金属及材料加工新技术教育部重点实验室 南宁 530004
4.广西大学化学化工学院 南宁 530004
Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-
YIN Yangyang1, LIU Jianfeng1,2,3(), MIAO Keji1, WANG Ting1, NING Kai1, PAN Weiguo1,2, YUAN Binxia1,3, YIN Shibin3,4
1.College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2.Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai 200090, China
3.Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials (Ministry of Education), Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
4.Guangxi University College of Chemistry and Chemical Engineering, Nanning 530004, China
全文: PDF(622 KB)   HTML
摘要: 

综述了Cl-与SO42-对奥氏体不锈钢腐蚀影响的国内外研究进展。介绍了奥氏体不锈钢的腐蚀机理,阐述了Cl-与SO42-对不锈钢腐蚀影响的原因,总结了不同研究者对SO42-具有抑制不锈钢在含Cl-溶液中腐蚀的原因,分析了不同研究者的结论存在差异的原因,并对今后的研究方向提出相应的建议。

关键词 奥氏体不锈钢不锈钢腐蚀Cl-SO42-    
Abstract

The research progress of the influence of Cl- and SO42- on the corrosion of austenitic stainless steel is reviewed. The corrosion mechanism of austenitic stainless steel and the influence of Cl- and SO42- on the corrosion of stainless steel are described, meanwhile, the reasons why SO42- can inhibit the corrosion of stainless steel in chloride solutions proposed by different researchers and their opinions differ are summarized and discussed . Finally, suggestions for future research directions are put forward.

Key wordsaustenitic stainless steel    stainless steel corrosion    Cl-    SO42-
收稿日期: 2020-11-11     
ZTFLH:  TG174  
基金资助:广西大学有色金属及特色材料加工重点实验室开放基金(2020GXYSOF17)
通讯作者: 刘建峰     E-mail: janice.liujianfeng@gmail.com
Corresponding author: LIU Jianfeng     E-mail: janice.liujianfeng@gmail.com
作者简介: 尹阳阳,男,1997年生,硕士生

引用本文:

尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
Yangyang YIN, Jianfeng LIU, Keji MIAO, Ting WANG, Kai NING, Weiguo PAN, Binxia YUAN, Shibin YIN. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 34-38.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.234      或      https://www.jcscp.org/CN/Y2022/V42/I1/34

图1  腐蚀机理简示图
1 Li X D. Corrosion crystallization mechanism research of 316L stainless steel equipments of ammonium sulfate crystallization devices [D]. Shanghai: East China University of Science and Technology, 2011
1 李小东. 硫铵结晶装置中316L不锈钢设备腐蚀机理的研究 [D]. 上海: 华东理工大学, 2011
2 Malik A U, Kutty P C M, Siddiqi N A, et al. The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions [J]. Corros. Sci., 1992, 33: 1809
3 Wang Z, Zhou Z Q, Zhang L, et al. Effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 585
4 Deng B, Jiang Y M, Liao J X, et al. Dependence of critical pitting temperature on the concentration of sulphate ion in chloride-containing solutions [J]. Appl. Surf. Sci., 2007, 253: 7369
5 Qiu X L, Xue Y N, Wang R. Corrosion behavior of low chromium steel in 3.5% sodium chloride solution [J]. Mater. Prot., 2014, 47(3): 12
5 秋兴利, 薛玉娜, 王荣. 3Cr钢在3.5%NaCl溶液中的腐蚀行为 [J]. 材料保护, 2014, 47(3): 12
6 Yin Z F, Feng Y R, Zhao W Z, et al. Pitting corrosion behaviour of 316L stainless steel in chloride solution with acetic acid and CO2 [J]. Corros. Eng. Sci. Technol., 2011, 46: 56
7 Huang S X. Study on the corrosion behavior of 304 stainless steel in simulated pits solution [D]. Nanchang: Nanchang Hangkong University, 2016
7 黄世新. 304不锈钢在蚀孔模拟溶液中的腐蚀行为研究 [D]. 南昌: 南昌航空大学, 2016
8 Hong T, Nagumo M. The effect of SO42- concentration in NaCl solution on the early stages of pitting corrosion of type 430 stainless steel [J]. Corros. Sci., 1997, 39: 961
9 Yang L J, Xu Y Z, Zhu Y S, et al. Evaluation of interaction effect of sulfate and chloride ions on reinforcements in simulated marine environment using electrochemical methods [J]. Int. J. Electrochem. Sci., 2016, 11: 6943
10 Munis A, Zheng M S, Zhao T Y. Effect of sulfate and meta-silicate ions on pitting corrosion of stainless steel-316 in chloride containing simulated coal gasifier aqueous effluents [J]. Mater. Res. Express, 2019, 6: 076541
11 Niu L B, Nakada K. Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel [J]. Corros. Sci., 2015, 96: 171
12 Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions [J]. Corros. Sci., 2010, 52: 3481
13 Gong X Z. The behavior of metastable pitting of stainless steel and the relation between metastable pitting and stable pitting [D]. Beijing: Beijing University of Chemical Technology, 2002
13 龚小芝. 不锈钢亚稳态孔蚀行为及其与稳态孔蚀的关系 [D]. 北京: 北京化工大学, 2002
14 Shahryari A, Kamal W, Omanovic S. The effect of surface roughness on the efficiency of the cyclic potentiodynamic passivation (CPP) method in the improvement of general and pitting corrosion resistance of 316LVM stainless steel [J]. Mater. Lett., 2008, 62: 3906
15 Scheiner S, Hellmich C. Finite Volume model for diffusion- and activation-controlled pitting corrosion of stainless steel [J]. Comput. Methods Appl. Mech. Eng., 2009, 198: 2898
16 Zhang Z W, Liu S F. Corrosion failure cause analysis and microstructure characterization of 304 austenitic stainless steel [J]. Heat Treat. Met., 2019, 44(S1): 96
16 张志伟, 刘素芬. 304奥氏体不锈钢腐蚀失效原因分析及组织表征 [J]. 金属热处理, 2019, 44(S1): 96
17 Frankel G S. Pitting corrosion of metals: a review of the critical factors [J]. J. Electrochem. Soc., 1998, 145: 2186
18 Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 5762
19 Zuo Y, Wang H T. Electrochemical study on metastable pitting of metals and alloys [J]. Corros. Sci. Prot. Technol., 1999, 11(1): 44
19 左禹, 王海涛. 金属亚稳态孔蚀行为的电化学研究 [J]. 腐蚀科学与防护技术, 1999, 11(1): 44
20 Zhang J, Ju P F, Wang C L, et al. Corrosion behaviour of 316L stainless steel in hot dilute sulphuric acid solution with sulphate and NaCl [J]. Prot. Met. Phys. Chem. Surf., 2019, 55: 148
21 Zhang Y. Research on corrosion behavior of 304L stainless steel in the role of Cl- [J]. J. Funct. Mater., 2015, 46: 13053
21 张瑜. 304L不锈钢在Cl-作用下腐蚀行为的研究 [J]. 功能材料, 2015, 46: 13053
22 Chang L, Wang F T, Zhang X N, et al. Analysis on the corrosion causes of stainless steel tubes in condensers of 600 MW unit [J]. Ind. Water Treat., 2019, 39(6): 111
22 常亮, 王锋涛, 张小霓等. 600 MW机组凝汽器不锈钢管腐蚀原因分析 [J]. 工业水处理, 2019, 39(6): 111
23 Liao K X, Cao Z H, He Z F. Influence of chloride ion on critical pitting temperature of 316L stainless steel [J]. Corros. Prot., 2017, 38: 446
23 廖柯熹, 曹增辉, 贺站锋. 氯离子对316L不锈钢临界点蚀温度的影响 [J]. 腐蚀与防护, 2017, 38: 446
24 Han Y J, Chen Y Y. Electrochemistry corrosion behaviors of 316L stainless steel in different electric conductivity seawaters and NaCl solutions [J]. Mater. Rev., 2012, 26(20): 57
24 韩亚军, 陈友媛. 316L不锈钢在不同电导率海水和NaCl溶液中的电化学腐蚀行为 [J]. 材料导报, 2012, 26(20): 57
25 Liu D Y, Wang M M, Zhang L, et al. Localized corrosion law of 316L stainless steel in deep seawater [J]. Equip. Environ. Eng., 2019, 16(1): 102
25 刘殿宇, 王毛毛, 张亮等. 316L不锈钢在海洋深水环境中的局部腐蚀规律 [J]. 装备环境工程, 2019, 16(1): 102
26 Xin S S, Li M C, Shen J N. The influence of seawater temperature and concentration on the pitting corrosion of 316L stainless steel [J]. Acta Metall. Sin., 2014, 50: 373
26 辛森森, 李谋成, 沈嘉年. 海水温度和浓缩度对316L不锈钢点蚀性能的影响 [J]. 金属学报, 2014, 50: 373
27 Zhang M L, Wang D, Wang X F, et al. Influence of Cl- concentrations on the corrosion behavior of 316L stainless steel in ocean environment [J]. Mater. Prot., 2019, 52(1): 34
27 张鸣伦, 王丹, 王兴发等. 海水环境中Cl-浓度对316L不锈钢腐蚀行为的影响 [J]. 材料保护, 2019, 52(1): 34
28 Shi Y H, Yu Y, Liang P, et al. Corrosion behaviors of 316L austenitic stainless steel in solutions containing chloride ions [J]. Mater. Prot., 2015, 48(8): 29
28 史艳华, 于洋, 梁平等. 316L不锈钢在氯离子环境中的腐蚀行为 [J]. 材料保护, 2015, 48(8): 29
29 Seman A A, Chan J K, Norazman M A, et al. Corrosion behavior of heat-treated and cryorolled Al 5052 alloys in different chloride ion concentrations [J]. Anti-Corros. Methods Mater., 2020, 67: 7
30 Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
31 Monteiro R D, van de Wetering J, Krawczyk B, et al. Corrosion behaviour of Type 316L stainless steel in hot caustic aqueous environments [J]. Met. Mater. Int., 2020, 26:630
32 Lin H B, Zhang J W, Li S Y. Effect of temperature on corrosion behavior of 316L stainless steel in 3.5%NaCl solution [J]. J. Liaoning Univ. Pet. Chem. Technol., 2019, 39(2): 54
32 林海波, 张巨伟, 李思雨. 温度对316L不锈钢在3.5%NaCl溶液中腐蚀行为的影响 [J]. 辽宁石油化工大学学报, 2019, 39(2): 54
33 Gong X Z, Xiao J, Zuo Y, et al. Effect of pH value on metastable pitting behaviour of stainless steel [J]. J. Beijing Univ. Chem. Technol., 2002, 29(4): 29
33 龚小芝, 肖娟, 左禹等. 溶液pH值对不锈钢亚稳态孔蚀行为的影响 [J]. 北京化工大学学报, 2002, 29(4): 29
34 Xie J J, Ningyu H, Sun X, et al. Corrosion behavior of 316L stainless Steel under Cl- corrosion medium [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 711: 012058
35 Du N, Tian W M, Zhao Q, et al. Effect of SO42- concentration on 304 stainless steel pitting corrosion in NaCl solution [J]. J. Mater. Eng., 2012, (7): 64
35 杜楠, 田文明, 赵晴等. SO42-浓度对304不锈钢在NaCl溶液中点蚀行为影响的研究 [J]. 材料工程, 2012, (7): 64
36 Tang X, Zhang L, Wang Z, et al. Effect of SO42- on the passive and pitting behavior of 316 L austenite stainless steel in a Cl- containing solution [J]. J. Eng. Sci., 2018, 40: 366
36 唐娴, 张雷, 王竹等. SO42-对含Cl-溶液中316L奥氏体不锈钢钝化行为及点蚀行为的影响 [J]. 工程科学学报, 2018, 40: 366
37 Marcus P, Maurice V, Strehblow H H. Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure [J]. Corros. Sci., 2008, 50: 2698
38 Pujar M G, Anita T, Shaikh H, et al. Use of electrochemical noise (EN) technique to study the effect of sulfate and chloride ions on passivation and pitting corrosion behavior of 316 stainless steel [J]. J. Mater. Eng. Perform., 2007, 16: 494
39 Liao J X, Jiang Y M, Wu W W, et al. Influence of SO42- in aqueous solution containing Cl- on the critical pitting corrosion temperature of 316 stainless steel [J]. Acta Metall. Sin., 2006, 42: 1187
39 廖家兴, 蒋益明, 吴玮巍等. 含Cl-溶液中SO42-对316不锈钢临界点蚀温度的影响 [J]. 金属学报, 2006, 42: 1187
40 Xie Q, Liang L. Corrosion-resistant effect of SO42- in cooling water on stainless steel tubes of condenser [J]. J. Shanghai Univ. Electric Power, 2000, 16(2): 33
40 解群, 梁磊. 冷却水中SO42-对凝汽器不锈钢管的缓蚀作用 [J]. 上海电力学院学报, 2000, 16(2): 33
[1] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[2] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[3] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[4] 陈宣东, 章青, 顾鑫, 李星. 基于概率分析的钢筋混凝土结构服役寿命预测研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[5] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[6] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[7] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[8] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[9] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[10] 邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[11] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[12] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[14] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[15] 田雪凯, 王海龙, 程旭东, 孙晓燕. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.