Please wait a minute...
中国腐蚀与防护学报  2006, Vol. 26 Issue (1): 11-18     
  研究报告 本期目录 | 过刊浏览 |
Fe-20Cr纳米涂层的电化学行为
孟国哲;李瑛;王福会
中国科学院金属研究所;金属腐蚀与防护国家重点实验室
ELECTROCHEMICAL BEHAVIOR OF Fe-20Cr NANOCRYSTALLINE COATINGS
Guozhe Meng;Ying Li;Fuhui Wang
中国科学院金属研究所;金属腐蚀与防护国家重点实验室
全文: PDF(316 KB)  
摘要: 利用磁控溅射技术在玻璃基体上制备了Fe-20Cr纳米晶涂层。分别测试了Fe-20Cr铸态和纳米晶涂层在含氯离子溶液(0.005mol/L H2SO4+0.5mol/L NaCl)与不含氯离子的溶液(0.005mol/L H2SO4+0.25mol/LNa2SO4)中的动电位极化曲线。结果表明,纳米化使材料的溶解速度增大,纳米晶涂层在两种溶液体系中均容易钝化;与铸态合金相比,纳米涂层的维钝电流增大两个数量级。在含氯离子溶液中,纳米晶涂层的维钝区间是铸态合金的两倍,耐局部腐蚀性能得到很大提高。利用电容测试技术和Mott-Schottky关系研究了Fe-20Cr铸态合金与纳米晶涂层分别在两种溶液中所形成钝化膜的半导体性能。结果表明铸态合金在不含氯离子的溶液中低电位下所形成的钝化膜为p型半导体,高电位下形成n型半导体,在含氯离子溶液中形成的钝化膜为p型半导体;而纳米晶涂层在两种溶液体系中形成的钝化膜均为n型半导体。钝化膜的结构类型的不同是导致Fe-20Cr纳米晶涂层与铸态合金具有不同电化学行为的主要原因。
关键词 磁控溅射纳米晶点蚀Mott-Schottky关系曲    
Abstract:Fe-20Cr nanocrystallized coatings (NC) were prepared by magnetron sputtering on a glass substrate.The potentiodynamic polarization of Fe-20Cr cast alloy and NC were measured respectively in 0.05 mol/L H2SO4+0.25 mol/L Na2SO4 and 0.05 mol/L H2SO4+0.5 mol/L NaCl solutions.The results showed that NC has greater trend to be auto-passivated in both solutions and the passive current density increased about 2 order magnitude compared with cast alloy.In solution containing Cl-,the passivity region of NC is 2 times than that of cast alloy.It indicated that the pitting resistance of NC was greatly improved.The semiconducting properties of the passive films formed on NC and cast alloy in both solutions were investigated by capacitance measurements.The results showed that Fe-20Cr cast alloy has poor resistance to pitting corrosion in chloride acidic solution due to its p-type semiconducting passive film.However,the passive film on Fe-20Cr NC was a n-type semiconductor which had a higher transpassivation potential and therefore higher resistance to pitting corrosion.The passive current density of NC was higher because of the higher donor/acceptor density in the passive film.The investigations showed that the type of passive films is responsible for the electrochemical behavior difference between NC and cast alloy.
Key wordsmagnetron sputtering    nanocrystalline    pitting corrosion    Mott-Schottky plot
收稿日期: 2004-12-01     
ZTFLH:  TG174.41  
通讯作者: 孟国哲   

引用本文:

孟国哲; 李瑛; 王福会 . Fe-20Cr纳米涂层的电化学行为[J]. 中国腐蚀与防护学报, 2006, 26(1): 11-18 .
Guozhe Meng, Ying Li, Fuhui Wang. ELECTROCHEMICAL BEHAVIOR OF Fe-20Cr NANOCRYSTALLINE COATINGS. J Chin Soc Corr Pro, 2006, 26(1): 11-18 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2006/V26/I1/11

[1]Lou H Y,Wang F H,Zhu S L,et al.Oxidation formation of K38Gsuperalloy and its sputtered micrograined coating[J].Surf.Coat.Tech.,1994,63:105-114
[2]Wang F H.The effect of nanocrystallization on the selective oxida-tion and adhesion of Al2O3scales[J].Oxid.Met.,1997,48:215-224
[3]Wang F H,Lou H Y,Zhu S L,et al.The mechanism of scale adhe-sion on sputtered microcrystalline CoCrAl film[J].Oxid.Met.,1996,45:39-50
[4]Wang F H.Oxidation resistance of sputtered Ni3(AlCr)nanocrys-tallized coating[J].Oxid.Met.,1997,47:247-258
[5]Intrui R B,Szklarska-Smialowska Z.Localized corrosion ofnanocrystalline 304 type stainless steel films[J].Corrosion,1992,48:398-403
[6]Zeiger W,Schneider M,Scharnweber D,et al.Corrosion behaviourof a nanocrystalline FeAl8 alloy[J].Nanostructured Materials,1995,6:1013-1016
[7]Mariano N A,Souza C A C,Oliviera M F,et al.Corrosion resistanceof amorphous and nanocrystalline Fe-M-B(M=Zr,Nb)alloys[J].Mater.Sci.Forum.,2000,861:343-346
[8]Oblonsky L J,Ryan M P,Isaacs H S.In situ determination of thecomposition of surface films formed on Fe-Cr alloys[J].J.Elec-trochem.Soc.,1998,145:1922-1932
[9]Kirchheim R,Heine H,Fischmeister H,et al.The passivity of iron-chromium alloys[J].Corros.Sci.,1989,29:899-917
[10]Mitrovic-Scepanovic V,MacDougall B,Graham M J.Nature ofpassive films on Fe-26Cr alloy[J].Corros.Sci.,1984,24:479-490
[11]Haupt S,Strehblow H H.A combined surface analytical and elec-trochemical study of the formation of passive layers[J].Corros.Sci.,1995,37:43-54
[12]Maurice V,Yang W P,Marcus P.XPS and STM study of the pas-sive films formed on Fe-22Cr(110)single-crystal surfaces[J].J.Electrochem.Soc.,1996,143:1182-1200
[13]Mischler S,Vogel A,Mathieu H J,et al.The chemical compositionof the passive film on Fe-24Cr and Fe-24Cr-11Mo studied byAES,XPS and SIMS[J].Corros.Sci.,1991,32:925-944
[14]Olsson C O A,Landolt D.Passive films on stainless steels-chem-istry,structure and growth[J].Electrochim.Acta,2003,48:1093-1104
[15]Bianchi G,Cerquetti A,Mazza F,et al.Chemical etching and pit-ting of stainless steel[J].Corros Sci.,1970,10:19-27
[16]Bianchi G,Cerquetti A,Mazza F,Torchio S.Electronic propertiesof oxide films and pitting susceptibility of type 304 stainless steel[J].Corros.Sci.,1972,12:495-502
[17]Irhzo A,Segui Y,Bui N,et al.On the conduction mechanism ofpassive films on molybdenum-containing stainless steel[J].Corro-sion,1986,42:141-147
[18]Hakiki N B,Da Cunha M B.Electronic structure of passive filmsformed on molybdenum-containing ferritic stainless steels[J].J.Electrochem.Soc.,1996,143:3088-3094
[19]Morison S R.Electrochemistry at Semiconductor and OxidizedMetal Electrodes[M].New York:Plenum Press,1980
[20]Dewald J F.The charge distribution at the zinc oxide-electrolyteinterface[J].J.Phys.Chem.Solid,1960,14:155-159
[21]Memming R,Conway B E,Bockris J O’M,et al.ComprehensiveTreatise of Electrochemistry Vol.7[M].New York:PlenumPress,1983:533
[22]Wilson R H.A model for the current-voltage curve of photoexcit-ed semiconductor electrodes[J].J.Appl.Phys.,1977,48:4292-4298
[23]Simoes A M P,Ferrira M G S,Rondot B,et al.Study of passivefilms formed on AISI 304 stainless steel by impedance measure-ments and photoelectrochemistry[J].J.Electrochem.Soc.,1990,137:82-87
[24]Liu D,Wang F,Cao C,et al.The pitting corrosion resistance of mi-crocrystalline coatings of sputtered 321 stainless steel[J].Corro-sion,1990,46:975-977
[25]Tong W P,Tao N R,Wang Z B,et al.Nitriding iron at lower tem-perature[J].Science,2003,299:686-688
[26]Fecht H J.Nanophase Materials:Synthesis,Properties,Applica-tions[M].Netherlands:Kluwer Academic,1994
[27]Koch C C.The synthesis and structure of nanocrystalline materialsproduced by mechanical attrition:a review[J].Nanostruct.Mater.,1993,2:109-128
[28]Suryanarayana C.Mechanical alloying and milling[J].Prog.Mater.Sci.,2001,46:1-184
[29]Kennedy J H,Frese K W.Flatband potentials and donor densitiesof polycrystallineα-Fe2O3determined from Mott-Schottky plots[J].J.Electrochem.Soc.,1978,125:723-726
[30]Carmezim M J,Simoes A M,Figueiredo M O,et al.Electrochemi-cal behavior of the thermally treated Cr-oxide films deposited onstainless steel[J].Corros.Sci.,2002,44:451-465
[31]Hakiki N B,Boundin S,Rondot B,et al.The electronic structure ofpassive films formed on stainless steel[J].Corros.Sci.,1995,37:1809-1822
[32]Hiroaki Tsuchiya,Shinji Fujimoto,Osamu Chihara,et al.Semicon-ducting behavior of passive films formed on pure Cr and Fe-Cralloys in sulfuric acid solution[J].Electrochim.Acta,2002,47:4357-4366
[33]Tato W,Landolt D.Electrochemical determination of the porosityof single and duplex PVD coatings of titanium and titanium nitrideon brass[J].J.Electrochem.Soc.,1998,145:4173-4181
[34]Yang S L,Wang F H,Zhu S L.Effect of columnar microstructureof NiAl microcrystalline coating on its oxidation behaviors[J].ActaMetall.Sin.,2001,37:625-627(杨松岚,王福会,朱圣龙.柱状晶界面对溅射NiAl微晶涂层高温氧化性能的影响[J].金属学报,2001,37:625-627)
[35]Song G L,Cao C N,Chen S H.A study on transition of iron fromactive into passive state[J].Corros.Sci.,(in press)
[36]Hamm D,Ogle K,Olsson C-O-A,et al.Passivation of Fe-Cralloys studied with ICP-AES and EQCM[J].Corros.Sci.,2002,44:1443-1456
[37]Ahn S J,Kwon H S.Effects of solution temperature on electronicproperties of passive film formed on Fe in pH 8.5 borate buffer so-lution[J].Electrochim.Acta,2004,49:3347-3353
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[12] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[13] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[14] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.