Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 391-396    DOI: 10.11902/1005.4537.2017.061
  研究报告 本期目录 | 过刊浏览 |
AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能
王志虎1, 张菊梅2, 白力静1, 张国君1()
1 西安理工大学材料科学与工程学院 西安 710048
2 西安科技大学材料科学与工程学院 西安 710054
Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer
Zhihu WANG1, Jumei ZHANG2, Lijing BAI1, Guojun ZHANG1()
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2 School of Materials Science and Engineering, Xi'an University of Science &Technology, Xi'an 710054, China;
全文: PDF(2549 KB)   HTML
摘要: 

采用微弧氧化技术在AZ91镁合金表面制备MgO陶瓷膜层,然后在该膜层通过化学镀铜技术制备金属铜层。利用SEM,XRD,EDS,电化学实验及四探针测试等手段研究了复合膜层的显微结构、相组成、耐蚀性和导电性。结果表明:微弧氧化处理获得以MgO为主相的陶瓷层可有效提高镁合金的耐蚀性,平均厚度为2.5 μm的化学镀铜层连续均匀地覆盖在微弧氧化陶瓷层表面,渗入并填充微弧氧化陶瓷层内部呈网状分布的孔隙,形成交错咬合状态;复合膜层表面的导电性良好,与基体镁合金相比,复合膜层的腐蚀电位提高了0.2 V,腐蚀电流密度下降了一个数量级。但由于化学镀铜层与基体镁合金之间产生的电偶腐蚀,导致复合膜层的耐蚀性较陶瓷层有所下降。

关键词 镁合金微弧氧化化学镀铜耐蚀性导电性    
Abstract

MgO ceramic coating was prepared firstly on AZ91 Mg-alloy by micro-arc oxidation (MAO),and on which then a Cu-layer was deposited by electroless copper plating. The microstructure, composition, corrosion resistance and electrical conductivity of the composite coating were characterized by means of SEM, XRD, EDS, electrochemical techniques and four-point probe test. The results indicate that the corrosion resistance of Mg-alloy can be effectively improved due to the existence of the ceramic MAO coating, and the 2.5 μm-thick Cu-layer is evenly covered on the surface of MAO coating, while the deposited Cu penetrates and fills the reticular-like pores on the MAO coating and thus to realize a mechanical interlock between the Cu-layer and the MAO coating. The composite coating exhibits well electrical conductivity. Meanwhile, the free corrosion potential of the composite coating increases by 0.2 V, and the corrosion current density is one order of magnitude lower in comparison with the bare Mg-alloy. However, the corrosion resistance of the composite coating is inferior to that of the MAO coating because of the galvanic corrosion between the Cu-layer and the matrix Mg-alloy.

Key wordsMg-alloy    micro-arc oxidation    electroless copper plating    corrosion resistance    electrical conductivity
收稿日期: 2017-04-25     
ZTFLH:  TG174.44  
基金资助:国家自然科学基金 (51674196,51601144和51701162)
作者简介:

作者简介 王志虎,男,1978年生,博士生

引用本文:

王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 391-396.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.061      或      https://www.jcscp.org/CN/Y2018/V38/I4/391

图1  微弧氧化陶瓷层及化学镀铜层的XRD谱
图2  微弧氧化陶瓷膜层及镀铜层的表面形貌
图3  复合膜层的截面形貌
图4  图3中复合膜层截面不同位置的EDS结果
图5  镁合金基体、MAO膜层及复合膜层的极化曲线
Sample Ecorr / V Icorr / Acm-2 Rp / Ωcm2
Bare Mg alloy -1.50 2.83×10-4 1.38×102
MAO coating -1.36 2.02×10-7 4.76×105
Composite coating -1.30 9.57×10-5 1.94×103
表1  镁合金基体、MAO膜层及复合膜层的电化学参数
[1] Easton M, Beer A, Barnett M, et al.Magnesium alloy applications in automotive structures[J]. JOM, 2008, 60: 57
[2] Xiao B, Kang F, Hu C K, et al.Application of the light structure material in the defense industry abroad[J]. Ordnance Mater. Sci. Eng., 2011, 34(1): 94(肖冰, 康凤, 胡传凯等. 国外轻质结构材料在国防工业中的应用[J]. 兵器材料科学与工程, 2011, 34(1): 94)
[3] Li Z J, Gu X A, Lou S Q, et al.The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29: 1329
[4] Liu Y, Liu S M, Yu L P, et al.Summary on corrosion behavior and micro-arc oxidation for magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 99(刘胤, 刘时美, 于鲁萍等. 镁合金的腐蚀与微弧氧化膜层研究[J]. 中国腐蚀与防护学报, 2015, 35: 99)
[5] Yu G, Liu Y L, Li Y, et al.Corrosion and protection of magnesium alloys[J]. Chin. J. Nonferrous Met., 2002, 12: 1087(余刚, 刘跃龙, 李瑛等. Mg合金的腐蚀与防护[J]. 中国有色金属学报, 2002, 12: 1087)
[6] Song Y L, Liu Y H, Zhu X Y, et al.Advance in studies on corrosion behavior of die-casting magnesium alloys[J]. Foundry, 2007, 56: 36(宋雨来, 刘耀辉, 朱先勇等. 压铸镁合金腐蚀行为研究进展[J]. 铸造, 2007, 56: 36)
[7] Durdu S, Aytaç A, Usta M.Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation[J]. J. Alloy. Compd., 2011, 509: 8601
[8] Jiang B L, Zhang S F, Wu G J.The study of the corrosion resistance of the ceramic coatings formed by micro-arcoxidation on the mg-base alloy[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 300(蒋百灵, 张淑芬, 吴国建. 镁合金微弧氧化陶瓷层耐蚀性的研究[J]. 中国腐蚀与防护学报, 2002, 22: 300)
[9] Peng J H, Huang F L, Liu G, et al.Dry sliding wear behavior of AZ91D Mg alloy with micro-arc-oxidation coating[J]. Chin. J. Nonferrous Met., 2009, 19: 981(彭继华, 黄芳亮, 刘刚等. AZ91D镁合金微弧氧化涂层的干摩擦磨损行为[J]. 中国有色金属学报, 2009, 19: 981)
[10] Dong H R, Ma Y, Guo H X, et al.Compactness of micro-arc oxidation coatings on AZ91D magnesium alloys and its effect on coating corrosion resistance[J]. Chin. J. Nonferrous Met., 2015, 25: 844(董海荣, 马颖, 郭惠霞等. AZ91D镁合金微弧氧化膜的致密性及其对耐蚀性的影响[J]. 中国有色金属学报, 2015, 25: 844)
[11] Shi H Y, Dong L F, Jiang B L, et al.Microstructure and corrosion properties of micro-arc oxidation composite electrophoretic coating on AZ31B magnesium alloy[J]. Rare Met. Mater. Eng., 2015, 44: 1679(时惠英, 董利芳, 蒋百灵等. AZ31B镁合金表面微弧电泳复合膜层微观结构及耐蚀性表征[J]. 稀有金属材料与工程, 2015, 44: 1679)
[12] Laleh M, Kargar F, Rouhaghdam A S.Improvement in corrosion resistance of micro arc oxidation coating formed on AZ91D magnesium alloy via applying a nano-crystalline sol-gel layer[J]. J. Sol-Gel Sci. Technol., 2011, 59: 297
[13] Li J M, Xue X N, Wang A J, et al.Electroless nickel plating of magnesium alloy with microarc oxidation pretreatment[J]. J. Chin.Soc. Corros. Prot., 2012, 32: 23(李均明, 薛晓楠, 王爱娟等. 镁合金微弧氧化预处理化学镀镍研究[J]. 中国腐蚀与防护学报, 2012, 32: 23)
[14] Lai X M, Kang Z X, Li Y Y.Duplex surface modification combined with micro-arc oxidation and polymer plating on AZ31 magnesium alloy and their functional properties[J]. Chin. J. Nonferrous Met., 2011, 21: 1299(赖晓明, 康志新, 李元元. AZ31镁合金微弧氧化与有机镀膜的复合表面改性及功能特性[J]. 中国有色金属学报, 2011, 21: 1299)
[15] Kang Z X, Lai X M, Wang F, et al.Preparation of super-hydrophobic duplex-treated film on surface of Mg-Mn-Ce magnesium alloy and its corrosion resistance[J]. Chin. J. Nonferrous Met., 2011, 21:283(康志新, 赖晓明, 王芬等. Mg-Mn-Ce镁合金表面超疏水复合膜层的制备及耐腐蚀性能[J]. 中国有色金属学报, 2011, 21: 283)
[16] Lv M, Liu J G, Zeng X Y, et al.High-adhesion Cu patterns fabricated by nanosecond laser modification and electroless copper plating[J]. Appl. Surf. Sci., 2015, 353: 1150
[17] Jiang B L, Zhang X F.Growth process and corrosion resistance of ceramic coatings formed by micro-arc oxidation on magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 97(蒋百灵, 张先锋. 镁合金微弧氧化陶瓷层的生长过程及其耐蚀性[J]. 中国腐蚀与防护学报, 2005, 25: 97)
[18] Chen D C, Li W F, Jie J, et al.Micro-structure and composition of ceramic coating on AZ91D magnesium alloy prepared by micro-arc oxidation[J]. Rare Met. Mater. Eng., 2009, 38(Suppl.2): 731(陈东初, 李文芳, 揭军等. AZ91D镁合金表面微弧氧化陶瓷膜微观结构与组成的研究[J]. 稀有金属材料与工程, 2009, 38(增刊2): 731)
[19] Shang W, Chen B Z, Shi X C, et al.Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique[J]. J. Alloy. Compd., 2009, 474: 541
[20] Duan H P, Du K Q, Yan C W, et al.Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D[J]. Electrochim. Acta, 2006, 51: 2898
[21] Zhao M Q, Lei A L.The Corrosion and Protection of Metals [M]. Beijing: National Defense Industry Press, 2002(赵麦群, 雷阿利. 金属的腐蚀与防护 [M]. 北京: 国防工业出版社, 2002)
[22] Ma R Z, Jiang M H, Xu Z X.Introduction to Functional Materials Science [M]. Beijing: Metallurgical Industry Press, 2006(马如璋, 蒋民华, 徐祖雄. 功能材料学概论 [M]. 北京: 冶金工业出版社, 2006)
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[4] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[8] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[9] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[11] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[12] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[13] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[14] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[15] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.