Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 487-494    DOI: 10.11902/1005.4537.2016.201
  综合评述 本期目录 | 过刊浏览 |
缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制
周勇1, 左禹2(), 闫福安1
1 武汉工程大学 绿色化工过程教育部重点实验室 武汉 430205
2 北京化工大学 材料电化学过程与技术北京市重点实验室 北京 100029
Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals
Yong ZHOU1, Yu ZUO2(), Fu-an YAN1
1 Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
2 Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(694 KB)   HTML
摘要: 

综述了近年来国内外若干缓蚀性物质对金属材料小孔腐蚀缓蚀效果和机制的研究进展,涉及到的缓蚀性物质主要包括无机阴离子、有机分子/离子以及稀土元素。到目前,针对无机阴离子对小孔腐蚀缓蚀效果和机制的研究相对较多,而针对稀土元素的则相对较少。本文通过综合介绍,以期为开发可同时抑制金属均匀腐蚀和小孔腐蚀的新型复合缓蚀剂提供支持和帮助,并指明进一步的研究方向。

关键词 缓蚀剂金属材料小孔腐蚀    
Abstract

The addition of inhibitors is one of the main methods to control the corrosion of metals and alloys. At present, studies and applications about inhibitors are mainly focused on the inhibition for uniform corrosion, but less on the inhibition for localized corrosion, particularly for pitting corrosion. In this paper, the inhibition effect and mechanism of several inhibitive species for pitting corrosion are summarized and compared, involving mainly inorganic anions, organic molecules/ions and rare earth elements. Relatively speaking, there are many studies about the inhibition of inorganic anions in recent years, but the published reports about the inhibition of rare earth elements are relatively few. The objective of this paper is to provide a reference for the development of novel and composite inhibitors in order to control uniform corrosion and pitting corrosion simultaneously. Finally, the further studies and applications are predicted.

Key wordsinhibitor    metals and alloy    pitting corrosion
收稿日期: 2016-10-12     
ZTFLH:  TG174.42  
基金资助:国家自然科学基金 (51601133和51210001)
作者简介:

作者简介 周勇,男,1985年生,博士

引用本文:

周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 487-494.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.201      或      https://www.jcscp.org/CN/Y2017/V37/I6/487

Type NO2- MoO42- PO43- HPO42- CrO42- Cr2O72- WO42-
Oxide film
Precipitation film --- --- ---
Adsorption film --- --- --- --- ---
Other ---
表1  无机阴离子缓蚀类型的分类
[1] Hill J A, Markley T, Forsyth M, et al.Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate[J]. J. Alloy. Compd., 2011, 509: 1683
[2] Ju H, Kai Z P, Li Y.Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation[J]. Corros. Sci., 2008, 50: 865
[3] Y?ld?r?m A, ?etin M.Synthesis and evaluation of new long alkyl side chain acetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors[J]. Corros. Sci., 2008, 50: 155
[4] Moretti G, Guidi F.Tryptophan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid[J]. Corros. Sci., 2002, 44: 1995
[5] Mu G N, Li X H, Qu Q, et al.Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution[J]. Corros. Sci., 2006, 48: 455
[6] Huang F L, Li K, Yang M, et al.Corrosion cause analysis and solutions with the operation of the stainless steel heat exchanger[J]. Petro Chem. Equip., 2008, 11(6): 45(黄凤林, 李楷, 杨敏等. 不锈钢换热器的腐蚀原因分析及解决办法[J]. 石油和化工设备, 2008, 11(6): 45)
[7] Li S H, Li P Y.Analysis of localized corrosion on SUPER304H steel tubes used for boilers and preventive countermeasures thereof[J]. Therm. Power Gener., 2011, 40(1): 87(李顺华, 李鹏云. SUPER304H锅炉钢管局部腐蚀分析及其防护对策[J]. 热力发电, 2011, 40(1): 87)
[8] Zhang X H, Chen J G.Corrosion mechanism and inhibitors screening of G105 oil drill pipe[J]. West-China Explor. Eng., 2012, 24(7): 56(张新华, 陈金国. G105钻杆腐蚀机理研究及缓蚀剂的筛选[J]. 西部探矿工程, 2012, 24: 56)
[9] Tan Y J, Fwu Y, Bhardwaj K.Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method[J]. Corros. Sci., 2011, 53: 1254
[10] Tan Y J, Mocerino M, Paterson T.Organic molecules showing the characteristics of localised corrosion aggravation and inhibition[J]. Corros. Sci., 2011, 53: 2041
[11] Dong Z H, Shi W, Zhang G A, et al.The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution[J]. Elecrochim. Acta, 2011, 56: 5890
[12] Jiang Z L, Norby T, Middleton H.Evaluation of metastable pitting on titanium by charge integration of current transients[J]. Corros. Sci., 2010, 52: 3158
[13] Dong Z H, Shi W, Guo X P.Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution[J]. Corros. Sci., 2011, 53: 1322
[14] Zhou Y, Zuo Y.The inhibitive mechanisms of nitrite and molybdate anions on initiation and propagation of pitting corrosion for mild steel in chloride solution[J]. Appl. Surf. Sci., 2015, 353: 924
[15] Foad El Sherbini E E, Aed El Rehim S S. Pitting corrosion of zinc in Na2SO4 solutions and the effect of some inorganic inhibitors[J]. Corros. Sci., 2000, 42: 785
[16] Abd El Haleem S M, Abd El Wanees S, Abd El Aal E E, et al. Environmental factors affecting the corrosion behavior of reinforcing steel. IV. Variation in the pitting corrosion current in relation to the concentration of the aggressive and the inhibitive anions[J] Corros. Sci., 2010, 52: 1675
[17] Abd El Haleem S M, Abd El Wanees S, Abd El Aal E E, et al. Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions[J]. Corros. Sci., 2010, 52: 292
[18] Zuo Y, Wang H T, Zhao J M, et al.The effects of some anions on metastable pitting of 316L stainless steel[J]. Corros. Sci., 2002, 44: 13
[19] Hong T, Nagumo M.The effect of SO42- concentration in NaCl solution on the early stages of pitting corrosion of type 430 stainless steel[J]. Corros. Sci., 1997, 39: 961
[20] Niu L B, Nakada K.Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel[J]. Corros. Sci., 2015, 96: 171
[21] Fujioka E, Nishihara H, Aramaki K.The inhibition of pit nucleation and growth on the passive surface of iron in a borate buffer solution containing Cl- by oxidizing inhibitors[J]. Corros. Sci., 1996, 38: 1915
[22] Foad El-Sherbini E E. Perchlorate pitting corrosion of tin in Na2CO3 solutions and effect of some inorganic inhibitors[J]. Corros. Sci., 2006, 48: 1093
[23] Amin M A.Metastable and stable pitting events on Al induced by chlorate and perchlorate anions-polarization, XPS and SEM studies[J]. Elecrochim. Acta, 2009, 54: 1857
[24] Refaey S A M, AbdEl Rehim S S. Inhibition of chloride pitting corrosion of tin in alkaline and near neutral medium by some inorganic anions[J]. Elecrochim. Acta, 1997, 42: 667
[25] Refaey S A M, Abd El-Rehim S S, Taha F, et al. Inhibition of chloride localized corrosion of mild steel by PO43-, CrO42-, MoO42- and NO2- anions[J]. Appl. Surf. Sci., 2000, 158: 190
[26] Deyab M A, Abd El-Rehim S S. Inhibitory effect of tungstate, molybdate and nitrite ions on the carbon steel pitting corrosion in alkaline formation water containing Cl- ion[J]. Elecrochim. Acta, 2007, 53: 1754
[27] Refaey S A M. Inhibition of steel pitting corrosion in HCl by some inorganic anions[J]. Appl. Surf. Sci., 2005, 240: 396
[28] Zhao J M, Zuo Y.Effects of three anions on pit propagation of mild steel in NaHCO3-NaCl solutions[J]. J. Chin. Soc. Corros. Prot., 2004, 24(3): 174(赵景茂, 左禹. 三种缓蚀性阴离子对碳钢在NaHCO3-NaCl溶液中点蚀的抑制作用[J]. 中国腐蚀与防护学报, 2004, 24(3): 174)
[29] Shi H Y, Tang Y M, Zuo Y.Effects of PO43- on pitting nucleation of 304 stainless steel in chloride solutions[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 36(石慧英, 唐聿明, 左禹. PO43-对304不锈钢在氯离子水溶液中小孔腐蚀形核过程的影响[J]. 中国腐蚀与防护学报, 2013, 33: 36)
[30] Li W S, Luo J L.Electric properties and pitting susceptibility of passive films formed on iron in chromate solution[J]. Electrochem. Commun., 1999, 1: 349
[31] Cheng Y F, Luo J L.A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions[J]. Appl. Surf. Sci., 2000, 167: 113
[32] Cheng Y F, Wilmott M, Luo J L.Analysis of the role of electrode capacitance on the initiation of pits for A516 carbon steel by electrochemical noise measurements[J]. Corros. Sci., 1999, 41: 1245
[33] Zakeri M, Nakhaie D, Naghizadeh M, et al.The effect of dichromate ion on the pitting corrosion of AISI 316 stainless steel. Part 1: Critical pitting temperature[J]. Corros. Sci., 2015, 93: 234
[34] Naghizadeh M, Nakhaie D, Zakeri M, et al.The effect of dichromate ion on the pitting corrosion of AISI 316 stainless steel Part II: Pit initiation and transition to stability[J]. Corros. Sci., 2015, 94: 420
[35] Jabeera B, Shibli S M A, Anirudhan T S. Synergistic inhibitive effect of tartarate and tungstate in preventing steel corrosion in aqueous media[J]. Appl. Surf. Sci., 2006, 252: 3520
[36] Li J, Zhao J M.Progress in research of Gemini surfactants as corrosion inhibitors for metals[J]. Corros. Prot., 2011, 32: 543(李俊, 赵景茂. Gemini表面活性剂作为金属缓蚀剂的研究进展[J]. 腐蚀与防护, 2011, 32: 543)
[37] Song W W, Zhang J, Du M.Research progress of bisquaternary ammonium compound inhibitors[J]. Chem. Ind. Eng. Prog., 2011, 30: 842(宋伟伟, 张静, 杜敏. 双季铵盐类缓蚀剂的研究进展[J]. 化工进展, 2011, 30: 842)
[38] Liu B Y, Liu Z, Wang G R.Current status and prospect of seawater inhibitors[J]. Mater. Prot., 2010, 43(8): 51(刘宝玉, 刘铮, 王国瑞. 海水缓蚀剂的研究现状与展望[J]. 材料保护, 2010, 43(8): 51)
[39] Chen Y L, Tang B.New development of corrosion inhibitors of carbon steel in hydrochloric acid[J]. Clean. World, 2010, 26(12): 17(陈雅玲, 汤兵. 盐酸介质中碳钢缓蚀剂最新研究进展[J]. 清洗世界, 2010, 26(12): 17)
[40] Ma Q G, Wei Y L, Zhang X L, et al.The research development of green corrosion inhibitor for carbon steel in sea water[J]. Environ. Sci. Technol., 2010, 22(12): 368(马庆国, 魏英立, 张学丽等. 绿色缓蚀剂在海水对碳钢缓蚀中的研究进展[J]. 环境科学与技术, 2010, 22(12): 368)
[41] Ormellese M, Lazzari L, Goidanich S, et al.A study of organic substances as inhibitors for chloride-induced corrosion in concrete[J]. Corros. Sci., 2009, 51: 2959
[42] Wang Y S, Zuo Y, Zhao X H, et al.The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution[J]. Appl. Surf. Sci., 2016, 379: 98
[43] Wang Y S, Zuo Y.Adsorption and inhibition behavior of calcium lignosulfonate on steel in NaCl+Ca(OH)2 solutions with different pH values[J]. Int. J. Electochem. Sci., 2016, 11: 6976
[44] Dong Z H, Zhu T, Shi W, et al.Inhibition of ethyleneamine on the pitting corrosion of rebar in a synthetic carbonated concrete pore solution[J]. Acta Phys.-Chem. Sin., 2011, 27: 905(董泽华, 朱涛, 石维等. 烯胺阻锈剂对钢筋在模拟碳化混凝土孔隙液中的点蚀抑制[J]. 物理化学学报, 2011, 27: 905)
[45] Deyab M A.Electrochemical investigations on pitting corrosion inhibition of mild steel by provitamin B5 in circulating cooling water[J]. Elecrochim. Acta, 2016, 202: 262
[46] Zuo Y, Wang S W, Tang Y M, et al.The inhibition of sodium oleate for pitting corrosion of aluminum alloy 2024 in 0.1 mol L-1 NaCl solution[J]. J. Braz. Chem. Soc., 2015, 26: 1656
[47] Zhang H, Yu J, Xu Y F, et al.Retardation of pitting of 304 stainless steel in aqueous sodium chloride by four kinds of environmentally acceptable inhibitors[J]. Mater. Prot., 2010, 43(6): 72(张欢, 余静, 徐燕飞等. 4种环境友好型缓蚀剂对304不锈钢在氯化钠介质中点蚀的抑制作用[J]. 材料保护, 2010, 43(6): 72)
[48] Xu C C, Wu X M.The influence of the local corrosion of 304 stainless steel by anions[J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 129(许淳淳, 吴小梅. 几种阴离子对AISI 304不锈钢孔蚀的影响 [J]. 中国腐蚀与防护学报, 2003, 23(3): 129)
[49] Tang Z L, Song S Z.An electrochemical investigation on the inhibition effect of piperidine for type 304 stainless steel in NaCl media[J]. J. Chin. Soc. Corros. Prot., 1996, 16: 94(唐子龙, 宋诗哲. 哌啶作为AISI304不锈钢孔蚀缓蚀剂的电化学研究[J]. 中国腐蚀与防护学报, 1996, 16: 94)
[50] Wei Z Q, Duby P, Somasundaran P.Pitting inhibition of stainless steel by surfactants: An electrochemical and surface chemical approach[J]. J. Colloid Interface Sci., 2003, 259: 97
[51] Han P, Chen C F, Yu H B, et al.Study of pitting corrosion of L245 steel in H2S environments induced by imidazoline quaternary ammonium salts[J]. Corros. Sci., 2016, 112: 128
[52] Lin Z C, Li M, Kuang Y F.Inhibiting pitting of passive films on 10# steel by bicarboxylate[J]. J. Hunan Univ., 1990, 17(2): 31(林志成, 黎明, 旷亚非. 二元羧酸盐对10#钢孔蚀的抑制作用[J]. 湖南大学学报,1990, 17(2): 31)
[53] Albrimi Y A, Addi A A, Douch J, et al.Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions[J]. Corros. Sci., 2015, 90: 522
[54] Bereket G, Yurt A.The inhibition effect of amino acids and hydroxy carboxylic acids on pitting corrosion of aluminum alloy 7075[J]. Corros. Sci., 2001, 43: 1179
[55] Ho D, Brack N, Scully J, et al.Cerium dibutylphosphate as a corrosion inhibitor for AA2024-T3 aluminum alloys[J]. J. Electochem. Sci., 2006, 153: B392
[56] Forsyth M, Markley T, Ho D, et al.Inhibition of corrosion on AA2024-T3 by new environmentally friendly rare earth organophosphate compounds[J]. Corrosion, 2008, 64: 191
[57] Forsyth M, Forsyth C M, Wilson K, et al.ATR characterisation of synergistic corrosion inhibition of mild steel surfaces by cerium salicylate[J]. Corros. Sci., 2002, 44: 2651
[58] Blin F, Koutsoukos P, Klepetsianis P, et al.The corrosion inhibition mechanism of new rare earth cinnamate compounds-Electrochemical studies[J]. Elecrochim. Acta, 2007, 52: 6212
[59] Davó B, de Damborenea J J. Use of rare earth salts as electrochemical corrosion inhibitors for an Al-Li-Cu (8090) alloy in 3.56%NaCl[J]. Elecrochim. Acta, 2007, 49: 4957
[60] Markley T A, Forsyth M, Hughes A E.Corrosion protection of AA2024-T3 using rare earth diphenyl phosphates[J]. Elecrochim. Acta, 2007, 52: 4024
[61] Mishra A K, Balasubramaniam R.Corrosion inhibition of aluminium by rare earth chlorides[J]. Mater. Chem. Phys., 2007, 103: 385
[62] Huang Y.On the inhibiting law and its mechanism of rare earth for the pitting corrosion of aluminum alloy in aqueous chloride solution[J]. J. Hunan Inst. Sci. Technol.(Nat. Sci.), 2004, 17(4): 59(黄燕. 稀土在含Cl-介质中对铝合金孔蚀的缓蚀规律及机理研究[J]. 湖南理工学院学报(自然科学版), 2004, 17(4): 59)
[63] Wan J H, Zhou J Y, Zhou S G, et al.Inhibition effect of rare earth cation Sm3+ on aluminum alloy[J]. Corros. Sci. Prot. Technol., 1997, 9(1): 44(万景华, 周家茵, 周世光等. 稀土离子Sm3+对铝合金孔蚀行为的缓蚀作用研究[J]. 腐蚀科学与防护技术, 1997, 9(1): 44)
[64] Zhou B E, Wang Y S, Zuo Y.Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors[J]. Appl. Surf. Sci., 2015, 357: 735
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[9] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[11] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[13] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 赵苇杭, 王浩伟, 蔡光义, 董泽华. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.