Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (6): 505-509    DOI: 10.11902/1005.4537.2014.247
  研究报告 本期目录 | 过刊浏览 |
在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响
赵景茂1,2(),赵雄1,姜瑞景1,2
1. 北京化工大学材料科学与工程学院 北京 100029
2. 北京化工大学 材料电化学过程与技术北京市重点实验室 北京 100029
Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment
Jingmao ZHAO1,2(),Xiong ZHAO1,Ruijing JIANG1,2
1. College of Material Science and Engineering,Beijing University of Chemical Technology, Beijing 100029, China
2. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, China
全文: PDF(1060 KB)   HTML
摘要: 

分别用硬脂酸、油酸、山俞酸和芥酸4种脂肪酸与二乙烯三胺合成了4种咪唑啉化合物。通过动态失重、SEM、接触角、原子力力曲线和分子动力学模拟等分析表征手段,研究了它们在动态H2S/CO2体系中对碳钢的缓蚀性能及其在20#碳钢表面上的吸附能力与疏水能力。结果表明,疏水链上带有双键的咪唑啉衍生物疏水效果更好,疏水链带有双键的咪唑啉衍生物其粘附力更大。用分子动力学模拟计算出4种咪唑啉衍生物在Fe (001) 表面的吸附能,疏水链中带有双键的咪唑啉的吸附能都要大于疏水链中没有双键的咪唑啉的吸附能。4种缓蚀剂缓蚀性能的理论评价结果与实验结果吻合。

关键词 H2S/CO2体系咪唑啉接触角分子动力学模拟    
Abstract

Four imidazoline derivates were synthesized using diethylenetriamine with stearic acid, oleic acid, n-docosanoic acid and erucic acid respectively as raw materials. Then the inhibition performance and adsorption capacity on the carbon steel surface and the ability of hydrophobic of the prepared derivates were studied in dynamic H2S/CO2 environment by means of dynamic weight loss test, SEM, AFM, contact angle measurement and molecular dynamics simulation. The measurememnt results for contact angle and AFM force showed that the hydrophobic effect is better and the adhesion force is bigger respectively for imidazoline derivatives with double bonds in their hydrophobic chains. The surface adsorption energy of the four imidazoline derivatives on the face of Fe (001) were calculated by using molecular dynamic simulation, the results indicated that the surface adsorption energy of imidazoline which has double bonds in hydrophobic chain was larger than that one without double bonds. The theoretical evaluation of corrosion inhibition performance of four imidazoline derivates accorded well with the experiment results.

Key wordsH2S/CO2 environment    imidazoline    contact angle measurement    molecular dynamics simulation
    

引用本文:

赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
Jingmao ZHAO, Xiong ZHAO, Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 505-509.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.247      或      https://www.jcscp.org/CN/Y2015/V35/I6/505

图1  4种咪唑啉衍生物的IR谱
Inhibitor Corrosion ratemm·a-1 Inhibitionrate
Blank 2.8214 ---
IM-17 0.8258 70.7%
IM-17D 0.5849 79.2%
IM-21 0.7260 74.3%
IM-21D 0.5677 79.8%
表1  在H2S/CO2溶液中加入不同咪唑啉后试片的腐蚀速率和缓蚀率
Inhibitor Left / deg Right / deg Average / deg
IM-17 83.7 83.4 83.6
IM-17D 93.9 93.6 93.8
IM-21 92.9 92.9 92.9
IM-21D 101.3 101.3 101.3
表2  吸附了缓蚀剂的碳钢表面的接触角
图2  试片表面测得的AFM力曲线
图3  加入不同缓蚀剂后试片表面的腐蚀产物形貌
图4  咪唑啉在Fe表面的吸附构型
Inhibitor EMolecule / kJ·mol-1 ESurface / kJ·mol-1 ETotal / kJ·mol-1 EAdsorption / kJ·mol-1
IM-17 155.4 -476780.2 -476855.8 231.0
IM-17D 269.2 -476780.2 -476797.4 286.4
IM-21 333.5 -476780.2 -476713.4 266.7
IM-21D 320.5 -476780.2 -476771.8 312.1
表3  缓蚀剂分子在Fe (001) 面的吸附能
[1] Liu M, Wang Y.Corrosion factor research of gas pipeline in gas field containing sulfur[J]. Pipeline Tech. Equip., 2011, (4): 43
[1] (刘明, 王毅. 高含硫气田集输管线腐蚀因素分析[J]. 管道技术与设备, 2011, (4): 43)
[2] Srinivasan S, Kane R D.Experimental simulation of multiphase CO2/H2S system[J]. Corrosion, 1999, (14): 1168
[3] Zhou J M.Corrosion behavior and protection of pipeline steel in CO2/H2S containing high temperature and high pressure water medium role [D]. Xi'an: Northwestern Polytechnical University, 2002
[3] (周计明. 油管钢在含CO2/H2S 高温高压水介质中的腐蚀行为及防护技术的作用 [D]. 西安: 西北工业大学, 2002)
[4] Zhang Q, Li Q A, Wen J B, et al.Progress in research on CO2/H2S corrosion of tubular goods[J]. Corros. Prot., 2003, 24(7): 277
[4] (张清, 李全安, 文九巴等. CO2/H2S对油气管材的腐蚀规律及研究进展[J]. 腐蚀与防护, 2003, 24(7): 277)
[5] Zheng J S, Huang K Y.Review and prospect of corrosion inhibitor development[J]. Mater. Prot., 2000, 33(5): 11
[5] (郑家燊, 黄魁元. 缓蚀剂科技发展的回顾与展望[J]. 材料保护, 2000, 33(5): 11)
[6] Xiao L Y, Qiao W H.Development of imidazoline corrosion inhibitor for corrosive media[J]. Corros. Sci. Prot. Technol., 2009, 21(4):340
[6] (肖丽亚, 乔卫红. 咪唑啉类缓蚀剂研究和应用的进展[J]. 腐蚀科学与防护技术, 2009, 21(4): 340)
[7] Xu B J, Teng H L, Wang J B.Corrosion inhibitor of tetrahydroglyoxaline ramification[J]. Corros. Prot., 2003, 24(8): 340
[7] (徐宝军, 腾洪丽, 王金波. 咪唑啉类衍生物缓蚀剂的研究[J]. 腐蚀与防护, 2003, 24(8): 340)
[8] Al-sabbagh A M. Organic corrosion inhibitors for steel pipelines in oilfield[J]. Anti-Corros. Methods Mater., 1996, 43(1): 11
[9] Jiang X, Zheng Y, Ke W.Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3%NaCl solution[J]. Corros. Sci., 2005, 47(11): 2636
[10] Liu X, Zheng Y G.The effect of hydrophobic group on the inhibition behavior of imidazoline for CO2 corrsoion of N80 in 3%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2009, 29(5): 333
[10] (刘瑕, 郑玉贵. 咪唑啉型缓蚀剂中疏水基团对N80钢在CO2饱和的3%NaCl溶液中的缓蚀性能影响[J]. 中国腐蚀与防护学报, 2009, 29(5): 333)
[11] Rodriguez-Valdez L M, Villamisar W, Casales M, et al. Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors[J]. Corros. Sci., 2006, 48: 4053
[12] Zhang Z.Preparation of supramolecular inhibitor and its protection of the condensater system [D]. Beijing: Beijing University of Chemical Technology, 2013
[12] (张展. 超分子缓蚀剂的制备及其对凝结水系统的保护 [D]. 北京: 北京化工大学, 2013)
[13] Qu J E, Guo X P, Huang J Y.Study on adsorption of inhibitors by electrochemical methods and AFM force curves[J]. J. Instrumental Anal., 2007, 26(1): 110
[13] (屈钧娥, 郭兴蓬, 黄金营. 缓蚀剂吸附行为的电化学及AFM力曲线研究[J]. 分析测试学报, 2007, 26(1): 110)
[14] Allen M P, Tildesley D J.Computer Simulation of Liquids [M]. Oxford: Clarendon Press, 1987
[15] Maitland G C, Rigby M, Smith E B, et al.Intermolecular Forces: Their Origin and Determination [M]. Oxford: Clarendon Press,1981: 185
[16] Kornherr A, Hansal S, Hansal W E G. Molecular dynamics simulations of the adsorption of industrial relevant silane molecules at a zinc oxide surface[J]. J. Chem. Phys., 2003, 119(18): 9719
[17] Zhang J.Theoretical investigation on corrosion inhibition mechanism of imidazoline inhibitors [D]. Qingdao: China University of Petroleum, 2008
[17] (张军. 咪唑啉类缓蚀剂缓蚀机理的理论研究 [D]. 青岛: 中国石油大学, 2008)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[5] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[7] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[8] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[9] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[10] 丁诗炳,项腾飞,李澄,郑顺丽,王绮,杜梦萍. 两步法制备超疏水耐蚀镍镀层[J]. 中国腐蚀与防护学报, 2016, 36(5): 450-456.
[11] 王玉娜, 聂凯斌, 杨冬, 姚隽旸, 董万田, 廖强强. 模拟海水淡化一级反渗透产水中咪唑啉缓蚀剂对20#碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 407-414.
[12] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[13] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[14] 张帆, 刘宏伟, 陈碧, 刘宏芳. CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.
[15] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.