Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 450-456    DOI: 10.11902/1005.4537.2015.233
  本期目录 | 过刊浏览 |
两步法制备超疏水耐蚀镍镀层
丁诗炳,项腾飞,李澄(),郑顺丽,王绮,杜梦萍
南京航空航天大学材料科学与技术学院 南京 211106
A Simple Two-step Process for Fabrication of Super-hydrophobic Nickel Film by Electro-deposition Technique
Shibing DING,Tengfei XIANG,Cheng LI(),Shunli ZHENG,Qi WANG,Mengping DU
College of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China
全文: PDF(2808 KB)   HTML
摘要: 

用两步电镀法在Fe基体表面制备了微纳米尺度特殊结构的超疏水镍镀层。用SEM观察了镀层形貌,并测定了H2O在镀层表面的接触角,用Tafel曲线和电化学阻抗谱研究了镀层的防腐性能。结果表明,经两步电镀所制备的镍镀层为花瓣状微纳米结构,粗糙程度较Fe基体表面有明显提高,有效提高了表面的疏水性,H2O在镀层表面的接触角高达140.23°。经过进一步的低表面能物质修饰后,接触角大于150°。镀层在3.5%NaCl溶液中表现出了良好的耐蚀性。

关键词 微纳米结构两步电镀电镀镍接触角耐蚀性    
Abstract

Micro-nano structural super-hydrophobic nickel coatings were prepared by a two-step electro-deposition technique on steel substrates. The surface morphology and wettability of the coatings were characterized by means of scanning electron microscope and water contact angle measurement. Their corrosion performance was investigated by polarization curves and electrochemical impedance technique. The results show that the petal-like micro-nano structural Ni coatings showed excellent hydrophobicity and much higher roughness rather than the bare steel. The coatings had a contact angle as high as 140.23°, which then can exceed to 150° after further modification with myristic acid. Besides, the coatings exhibit excellent corrosion resistance in the 3.5%NaCl solution.

Key wordsmicro-nano structure    two-step electrodeposition    electronickelling    water contactangle    corrosion resistance
    
基金资助:江苏高校优势学科建设工程资助项目

引用本文:

丁诗炳,项腾飞,李澄,郑顺丽,王绮,杜梦萍. 两步法制备超疏水耐蚀镍镀层[J]. 中国腐蚀与防护学报, 2016, 36(5): 450-456.
Shibing DING, Tengfei XIANG, Cheng LI, Shunli ZHENG, Qi WANG, Mengping DU. A Simple Two-step Process for Fabrication of Super-hydrophobic Nickel Film by Electro-deposition Technique. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 450-456.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.233      或      https://www.jcscp.org/CN/Y2016/V36/I5/450

图1  经一步和两步电镀获得的镍镀层的微观形貌
图2  水滴在裸露Fe基体及经不同电镀处理镀镍层的接触角
图3  Fe基体, MNF和MMNF的动电位极化曲线图
图4  十四酸在镍镀层表面自组装结构示意图
Sample RΩ IcorrμAcm-2 φV (vs SCE) vgm-2h-1
Fe substrate 104.1 420 -0.672 4.3870
MNF 6535 6.235 -0.488 0.0684
MMNF 16520 2.982 -0.413 0.0328
表1  Fe基体, MNF和MMNF极化曲线拟合参数
图5  Fe基体、MNF和MMNF的Nyquist和Bode图
图6  Fe基体、MNF和MMNF的EIS等效电路图
图7  MMNF在3.5%NaCl溶液中浸泡不同时间后的Nyquist图
Sample RsΩcm2 RctΩcm2 CPE-TΩ-1cm-2sp CPE-P RcΩcm2 CPE-T1Ω-1cm-2sp CPE-P1 CdlFcm-2 CcFcm-2 RairΩcm2 CairFcm-2
Fe substrate 6.455 153 2.65×10-3 0.88 --- --- --- --- --- --- ---
MNF 9.052 6623 5.73×10-5 0.83 136 6.53×10-6 0.86 --- --- --- ---
MMNF 12.29 18019 9.53×10-6 --- 112.2 --- --- 9.5×10-6 4.50×10-5 1.21×1010 4.09×10-6
表2  由图5获得的阻抗谱拟合参数
Immersion time / h RsΩcm2 RctΩcm2 CPE-TΩ-1cm-2sp CPE-P RcΩcm2 CPE-T1Ω-1cm-2sp CPE-P1
24 9.639 12396 4.73×10-5 0.860 164.2 4.53×10-6 0.89952
48 9.305 7723 4.43×10-5 0.905 150.2 5.23×10-6 0.87952
表3  由图7获得的阻抗谱拟合参数
[1] Wu L K, Liu L, Li J.Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection[J]. Surf. Coat. Technol., 2010, 204(23): 3920
[2] Zhang X, Shi F, Niu J.Superhydrophobic surfaces: From structural control to functional application[J]. J. Mater. Chem., 2008, 18(6): 621
[3] Liu Y, Yin X, Zhang J.A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochim. Acta, 2014, 125: 395
[4] Zhou M, Pang X, Wei L.In situ grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties[J]. Appl. Surf. Sci., 2015, 337: 172
[5] Song J, Xu W, Liu X. Ultrafast fabrication of rough structures required by superhydrophobic surfaces on al substrates using an immersion method [J]. Chem. Eng. J., 2012, 211/212: 143
[6] Liu T, Chen S, Cheng S.Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochim. Acta, 2007, 52(28): 8003
[7] Zheng S L, Li C, Fu Q T.Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance[J]. Surf. Coat. Technol., 2015, 276: 341
[8] Liu H, Feng L, Zhai J.Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity[J]. Langmuir, 2004, 20: 5659
[9] Khorsand S, Raeissi K, Ashrafizadeh F.Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process[J]. Appl. Surf. Sci., 2014, 305: 498
[10] Chen Z, Hao L M, Chen A Q.A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method[J]. Electrochim. Acta, 2012, 59: 168
[11] Wu L K, Zhang X F, Hu J M.Corrosion protection of mild steel by one-step electrodeposition of superhydrophobic silica film[J]. Cor-ros. Sci., 2014, 85: 482
[12] Wang G, Guo Z, Liu W.Interfacial effects of superhydrophobic plant surfaces: A review[J]. J. Bionic Eng., 2014, 11(3): 325
[13] Takashi N, Masashi M, Katsuhiko N.The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15: 4321
[14] Eiji H, Shinobu F, Itaru H.Superhydrophobic perpendicular nanopin film by the bottom-up process[J]. J. Am. Chem. Soc., 2005, 127: 13458
[15] Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988
[16] Cassie A, Baxter S.Wettability of porous surface[J]. Trans. Faraday Soc., 1944, 40: 546
[17] Wang N, Xiong D S, Deng Y L.Mechanically robust superhydrophobic steelicing, UV-durability, and corrosion resistance[J]. ACS Appl. Mater. Interfaces, 2015, 7: 6260
[18] Bico J, Thiele U, Quéré D.Wetting of texture surfaces[J]. Colloid Surf. A: Physicochem. Eng. Asp., 2002, 206: 41
[19] Ishizaki T, Hieda J, Saito N.Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition[J]. Electrochim. Acta, 2010, 55: 7094
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[11] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[14] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[15] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.