Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (2): 156-162    DOI: 10.11902/1005.4537.2014.043
  本期目录 | 过刊浏览 |
CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究
张帆, 刘宏伟, 陈碧, 刘宏芳()
华中科技大学化学与化工学院材料与环境化学研究所 武汉 430074
Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria
ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang()
Institute of Materials and Environmental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(1826 KB)   HTML
摘要: 

采用腐蚀失重法、三维显微镜和电化学方法研究咪唑啉在含有硫酸盐还原菌 (SRB) 的饱和CO2模拟水中的缓蚀行为,通过紫外分光光度法同步检测咪唑啉浓度变化,研究咪唑啉对SRB生长影响及通过Fourier红外分析咪唑啉残余物质结构。结果表明,缓蚀剂的添加抑制了SRB的生长,经过10 d的培养后,在有/无SRB的体系中缓蚀剂都具有很高的缓蚀性能,缓蚀率分别为93.0%和94.4%。在有/无SRB体系中的咪唑啉含量分别减小为86.5%和87.5%,红外分析表明残余物质含有咪唑啉的五元环结构特征峰,咪唑啉缓蚀剂不会因SRB生长而使特征官能团断开,其缓蚀性能具有长效性。

关键词 咪唑啉硫酸盐还原菌CO2    
Abstract

The inhibition behavior of imidazoline on carbon steel in CO2-saturated artificial sewages with sulfate reduction bacteria (SRB) was investigated by weight loss method, 3D microscope and electrochemical methods. The concentrations of imidazoline were measured by UV-visible spectrophotometer,then the breeding of SRB was studied by measuring the amount of bacteria and the molecular structure of residual materials of imidazoline was characterized by FTIR. The results showed that: imidazoline could inhibit the breeding of SRB and imidazoline exhibited rather high inhibition efficiency in the artificial sewages without and with SRB after 10 d of incubation, correspondingly the contents of imidazoline were reduced to 87.5% and 86.5% for the two cases. The FTIR showed that characteristic peaks of pentacyclic compounds in the infrared spectra of the imidazoline residue could be observed, which implied that the functional groups of imidazoline were not destroyed by SRB during the corrosion process. Therefore, the imidazoline could act as inhibitor in the presence of the SRB for long term.

Key wordsimidazoline    sulfate reducing bacteria    CO2
收稿日期: 2014-04-18     
ZTFLH:  O646  
基金资助:国家自然科学基金项目 (51171067) 和深圳市基础研发基金项目 (JC201005310696A) 资助
作者简介: null

张帆,男,1988年生,硕士生;刘宏伟,男,1988年生,博士生 (并列第一作者)

引用本文:

张帆, 刘宏伟, 陈碧, 刘宏芳. CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.
Fan ZHANG, Hongwei LIU, Bi CHEN, Hongfang LIU. Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 156-162.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.043      或      https://www.jcscp.org/CN/Y2015/V35/I2/156

图1  在不同浓度的咪唑啉介质中的SRB菌量
图2  含饱和CO2和SRB模拟污水中不同浓度咪唑啉条件下20#碳钢的Nyquist图和极化曲线
C / mgL-1 Rs / Ωcm2 Cf / 10-4 Fcm-2 Cf -n Rf / Ωcm2 Cdl / 10-4 Fcm-2 Cdl-n Rt / Ωcm2
0 13.2 39.2 0.953 6.28 41.9 0.628 801
10 15.3 36.9 0.834 162 40.5 0.720 1051
20 17.3 28.9 0.782 918 26.0 0.760 1506
50 12.5 5.14 0.624 2274 17.0 0.845 5395
100 12.6 3.24 0.590 2504 8.91 0.95 41556
表1  含饱和CO2和SRB模拟污水中不同浓度咪唑啉条件下20#碳钢EIS拟合所得电化学参数
C / mgL-1 Ecorr / mV βa / mVdec-1 βc / mVdec-1 Icorr / μAcm-2 Corrosion rate / mma-1
0 -797 70.1 167 19.9 0.235
10 -796 73.7 156 9.22 0.109
20 -778 83.2 180 6.39 0.075
50 -755 158 74.4 1.15 0.014
100 -636 140 94.3 0.544 0.006
表2  含不同浓度咪唑啉条件下20#碳钢的极化曲线拟合数据
System Corrosion rate mma-1 Inhibition efficiency / %
A 0.136 ---
B 0.244 ---
C 0.0095 93.0
D 0.0135 94.4
表3  20#钢在4种体系中的腐蚀速率及缓蚀效率
图3  20#钢在4种不同体系中腐蚀10 d后的三维显微镜图
图4  不同浓度咪唑啉紫外可见分光光谱
图5  SRB培养不同时间后体系C和D中咪唑啉的浓度变化
图6  20#钢在4种不同体系中浸泡0和10 d后的极化曲线
Time
d
System Ecorr
mV
βa
mVdec-1
βc
mVdec-1
Icorr
μAcm-2
0 A -719 72.9 436 10.40
B -715 61.0 385 18.80
C -684 86.8 152 1.38
D -657 94.4 134 1.68
10 A -749 96.6 512 8.75
B -743 79.0 461 32.40
C -715 137.6 268 2.13
D -695 91.3 556 3.53
表4  20#钢在4种不同体系中浸泡不同时间后的极化曲线拟合结果
图7  咪唑啉及体系C 和D萃取液的红外光谱
图8  20#钢挂片40 d后腐蚀介质中的SRB菌量
[1] Yang G, Wang Y G, Jin X C, et al. The study of CO2 corrosion in oil-gas well[J]. Total Corros. Control, 2009, 22(5): 24
[1] (杨光, 王亚刚, 金小春等. 油气井二氧化碳腐蚀研究[J]. 全面腐蚀控制, 2009, 22(5): 24)
[2] Tan Y J, Bailey S, Kinsella B. An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS)[J]. Corros. Sci., 1996, 38(9): 1545
[3] Raja P B, Sethuraman M G. Natural products as corrosion inhibitor for metals in corrosive media—a review[J]. Mater. Lett., 2008, 62(1): 113
[4] Gece G. The use of quantum chemical methods in corrosion inhibitor studies[J]. Corros. Sci., 2008, 50(11): 2981
[5] Wang Q, Fu C Y. Corrosion inhibition and adsorption effect of rosinyl imidazolium quaternary ammonium salt on steel in CO2-saturated NaCl solution[J]. Corros. Sci. Prot. Technol., 2012, 24(4): 319
[5] (王倩, 付朝阳. CO2饱和NaCl溶液中松香基咪唑啉季铵盐的缓蚀吸附行为[J]. 腐蚀科学与防护技术, 2012, 24(4): 319)
[6] Zhang J, Du M, Yu H H, et al. Effect of molecular structure of imidazoline inhibitors on growth and decay laws of films formed on Q235 steel[J]. Acta Phys.-Chim. Sin., 2009, 25(3): 525
[7] Edwards A, Osborne C, Webster S, et al. Mechanistic studies of the corrosion inhibitor oleic imidazoline[J]. Corros. Sci., 1994, 36(2): 315
[8] Okafor P C, Zheng Y. Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions[J]. Corros. Sci., 2009, 51(4): 850
[9] Wang D, Li S, Ying Y, et al. Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives[J]. Corros. Sci., 1999, 41(10): 1911
[10] Liu H F, Wang M F, Xu L M. Progress in microbiologic control on corrosion caused by sulfate-reducing bacteria[J]. Corros. Sci. Prot. Technol., 2003, 15(3): 161
[10] (刘宏芳, 汪梅芳, 许立铭. 硫酸盐还原菌腐蚀的微生物防治研究进展[J]. 腐蚀科学与防护技术, 2003, 15(3): 161)
[11] Liu H F, Liu T. Thermophilic sulfate-reducing bacteria growth and its impact on the corrosion of carbon steel[J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 93
[11] (刘宏芳, 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2009, 29(2): 93)
[12] Fan M M, Zhao Y, Yan H Y, et al. Influence of sulfate-reducing bacteria on the carbon dioxide corrosion behavior of X60 steel[J]. Equip. Environ. Eng., 2010, 7(5): 13
[12] (范梅梅, 赵勇, 闫化云等. 硫酸盐还原菌对 X60钢CO2腐蚀行为的影响[J]. 装备环境工程, 2010, 7(5): 13)
[13] Dong Z H, Liu T, Liu H F. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27(5): 487
[14] Ye Q, Li K J, Guo P P, et al. Evolution of SRB biofilm and its influence on corrosion of Q235 carbon steel in oilfield sewage[J]. Corros. Sci. Prot. Technol., 2013, 25(3): 195
[14] (叶琴, 李克娟, 郭佩佩等. 油田污水中碳钢表面生物膜生长规律及腐蚀电化学行为[J]. 腐蚀科学与防护技术, 2013, 25(3): 195)
[15] Fan M M, Liu H F. Effect of carbon dioxide on microbiologically influenced corrosion characteristic of X60 steel[J]. Corros. Sci. Prot. Technol., 2012, 24(2): 107
[15] (范梅梅, 刘宏芳. 二氧化碳对X60钢微生物腐蚀行为影响[J]. 腐蚀科学与防护技术, 2012, 24(2): 107)
[16] Fan M M, Liu H F, Dong Z H. Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water[J]. Mater. Corros., 2013, 64(3): 242
[17] Qin S, Qi B, Huang Z, et al. Toxicity evaluation of inhibitor water environment applied in oil and gas field[J]. Oil-gasfield Surf. Eng., 2011, 30(8): 10
[17] (秦双, 漆蓓, 黄茁等. 油气田常用缓蚀剂水环境综合毒性评价[J]. 油气田地面工程, 2011, 30(8): 10)
[18] Jiao Q Z, Fu C Y, Wang L R, et al. Concentration measurement of imidazoline inhibitor applied in oil and gas field[J]. Nat. Gas Ind., 2006, 26(6): 131
[18] (焦其正, 付朝阳, 王丽荣等. 油气田用咪唑啉类缓蚀剂浓度的检测方法[J]. 天然气工业, 2006, 26(6): 131)
[1] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[2] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[3] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[4] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[5] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[7] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[8] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[9] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[10] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[11] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[12] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[13] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[14] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[15] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.