Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (3): 192-196    
  研究报告 本期目录 | 过刊浏览 |
水溶性壳聚糖及其磷酸酯在海水中对碳钢的缓蚀作用
吴茂涛1,李言涛2,李再峰1,侯保荣2
1. 青岛科技大学化学与分子工程学院 青岛 266042
2. 中国科学院海洋研究所 青岛 266071
CORROSION INHIBITION PERFORMANCE OF CHITOSAN AND PHOSPHONIC CHITOSAN FOR MILD STEEL IN SEAWATER
WU Maotao1, LI Yantao2, LI Zaifeng1, Hou Baorong2
1. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042
2. Institute of Oceanology, Chinese Academy of Sciences,Qingdao 266071
全文: PDF(1555 KB)  
摘要: 

对水溶性壳聚糖进行磷酸酯化改性。采用静态失重实验与电化学测试相结合,研究了水溶性壳聚糖及其磷酸酯对Q235低碳钢在海水中的腐蚀抑制作用,并探讨缓蚀机理。结果表明,水溶性壳聚糖对碳钢具有一定的缓蚀作用,随其浓度的增加缓蚀率升高;壳聚糖磷酸酯在300 mg/L时缓蚀率达到88.71%,高温下仍保持较高的缓蚀效率,且持久保持高效。壳聚糖磷酸酯为抑制阴极型缓蚀剂。

关键词 水溶性壳聚糖碳钢缓蚀缓蚀率极化    
Abstract

Water soluble chitosan was modified by phosphonation. The inhibitive properties of chitosan and phosphonic chitosan for Q235 mild steel in seawater were studied by mass loss method and electrochemical measurement, and the inhibitive mechanism was analyzed. The results showed that chitosan had corrosion inhibitive effect for mild steel, and with the increasing of dosage of chitosan the inhibition efficiency was increased. The inhibition efficiency of phosphonic chitosan reached to 88.71 % when the concentration was 300 mg/L, and it had good inhibition effect at high temperature and inhibition efficiency kept high for long period of time. Polarization curves indicated that phosphonic chitosan is a cathodic corrosion inhibitor.

Key wordswater soluble chitosan    mild steel    inhibition    inhibition efficiency    polarization
收稿日期: 2009-01-04     
ZTFLH: 

TG 174.42

 
基金资助:

青岛市科技发展计划项目(05-1-JC-87)资助

通讯作者: 李再峰     E-mail: lizfengphd@126.com
Corresponding author: LI Zaifeng     E-mail: lizfengphd@126.com
作者简介: 吴茂涛,男,1986年生,硕士,研究方向为绿色海水缓蚀剂

引用本文:

吴茂涛,李言涛,李再峰,侯保荣. 水溶性壳聚糖及其磷酸酯在海水中对碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2010, 30(3): 192-196.
WU Mao-Shou, LI Zai-Feng. CORROSION INHIBITION PERFORMANCE OF CHITOSAN AND PHOSPHONIC CHITOSAN FOR MILD STEEL IN SEAWATER. J Chin Soc Corr Pro, 2010, 30(3): 192-196.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I3/192

[1] Wei G, Xiong R C. Green chemistry and perspectives on corrosion protection [J]. Corros. Sci. Prot. Technol., 2001, 13(1): 31-36
  (魏刚,熊蓉春. 绿色化学与防腐蚀技术的发展方向 [J]. 腐蚀科学与防护技术, 2001,13(1): 31-36)
[2] Li Y T, Hou B R.Progress on natural environmental friendly corrosion inhibitors for metals [J]. Corros. Sci. Prot. Technol., 2006, 18(1): 37-40
  李言涛,侯保荣. 天然环保型缓蚀剂近期研究进展 [J]. 腐蚀科学与防护技术, 2006, 18(1):37-40
[3] Marguerite R. Chitin and chitosan: properties and applications [J]. Prog Polymer Sci, 2006, 31(7):603-632
[4] Yang X J, Qian Y J, Yu W X, et al.Research on the synergistic effect of three compound compositions as corrosion inhibitors [J]. Sichuan Chem. Ind. Corros. Prot., 1998, 1(1): 12-17
  (杨晓静,钱倚剑, 于文霞等. 三组份复合缓蚀剂的协同效应研究 [J]. 四川化工与腐蚀控制,1998, 1(1): 12-17)
[5] Yang X J, Qian Y J. Study of corrosion inhibition performance of modifying chitosan compared with S-6350 and PC-604 [J]. Mater. Prot., 1999,32(6): 18-19
  (杨晓静,钱倚剑. 改性甲壳胺与S-6350,PC-604缓蚀性能的比较研究 [J]. 材料保护, 1999, 32(6): 18-19)
[6] Qin X P. Corrosion and Protection of Equipment[M].Xi'an: Northwestern Polytechnical University Press, 1995
[7] (秦熊浦. 设备腐蚀与防护 [M]. 西安: 西北工业大学出版社. 1995)
[8] Wang X J, Xiao J. A long-term corrosion inhibition of a modifying natural polymer acid corrosion inhibitor [J]. J. South China Univ.Technol., 1998, 26(10): 23-25
  (汪晓军, 肖锦. 改性天然高分子酸缓蚀剂的长效缓蚀性能研究 [J]. 华南理工大学学报, 1998, 26(10): 23-25)
[9] Cao C N. Corrosion Electrochemistry [M].Beijing: Chemistry Industry Press, 2004
[10] (曹楚南. 腐蚀电化学原理 [M]. 北京:化学工业出版社, 2004)
[11] John N M. Electrochemical test methods for evaluating organic on metals, an update Part 1Introduction and generalizes regarding electrochemical testing of organic coating [J]. Prog. Organic Coatings, 1997, 30:225-233
[12] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[13] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京:科学出版社,2002)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[5] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[6] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[7] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[8] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[10] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[11] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[12] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[13] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[14] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[15] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.