Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 15-24     CSTR: 32134.14.1005.4537.2025.288      DOI: 10.11902/1005.4537.2025.288
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
增材制造合金在核能领域应用中的腐蚀研究进展
戴念维1,2(), 窦欣懿1, 刘华剑1, 冷滨1,2
1.中国科学院上海应用物理研究所材料研究部 上海 201800
2.中国科学院上海应用物理研究所 钍基核裂变能全国重点实验室 上海 201800
Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field
DAI Nianwei1,2(), DOU Xinyi1, LIU Huajian1, LENG Bin1,2
1.Division of Materials Research, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.State Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
引用本文:

戴念维, 窦欣懿, 刘华剑, 冷滨. 增材制造合金在核能领域应用中的腐蚀研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
Nianwei DAI, Xinyi DOU, Huajian LIU, Bin LENG. Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 15-24.

全文: PDF(8332 KB)   HTML
摘要: 

增材制造(AM)技术,包括激光粉末床熔融(LPBF)、定向能量沉积(DED)和电弧送丝增材制造(WAAM),因其具有高精度、加工效率高、复杂结构加工和节约材料成本等显著优势,开创了一个新的材料制造革命。增材制造技术在核能领域也展现出巨大的应用潜力,如制造反应堆芯、燃料包壳和先进热交换器等关键合金部件。然而,反应堆系统中的极端环境(高温、高压、辐照、强腐蚀性介质)对增材制造合金的服役性能提出了极高要求。其中,合金的耐腐蚀性能首当其冲成为关注的焦点。本文综述了近年来典型的增材制造合金,例如不锈钢、FeCrAl和复杂成分合金等,在模拟核服役环境下的腐蚀研究进展。对比研究了与传统锻造合金材料的差异,分析了微观结构特征对腐蚀机理的影响。进一步展望了增材制造合金在未来先进核能领域的应用前景。

关键词 增材制造核能腐蚀行为组织结构局部腐蚀应力腐蚀    
Abstract

Additive manufacturing (AM) technologies, including laser powder bed fusion (LPBF), directed energy deposition (DED), and wire arc additive manufacturing (WAAM), have started a revolution in materials manufacturing due to their significant advantages such as high precision, high processing efficiency, capability for complex structures and material cost savings. These technologies demonstrate immense application potential in nuclear energy sectors, particularly in fabricating critical alloy components such as reactor cores, fuel claddings and advanced heat exchangers. However, the extreme environments within reactor systems including high temperatures, high pressures, radiation and highly corrosive media, put forward strict demands on the service performance of additively manufactured alloys. Among others, the corrosion resistance of alloys has become a primary focus of concern. This review summarizes recent research progress on corrosion behavior in simulated nuclear conditions of typical additively manufactured alloys, such as stainless steels, FeCrAl alloys and complex composition alloys etc. It comparatively examines the differences between AM alloys and conventionally forged counterparts, analyzing the influence of microstructural characteristics on corrosion mechanisms. Furthermore, the application prospects of additively manufactured alloys in future advanced nuclear energy systems are discussed.

Key wordsadditive manufacturing    nuclear energy    corrosion behavior    microstructure    localized corrosion    stress corrosion
收稿日期: 2025-09-11      32134.14.1005.4537.2025.288
ZTFLH:  TG147  
基金资助:国家自然科学基金(12425511)
通讯作者: 戴念维,E-mail:dainianwei@sinap.ac.cn,研究方向为核能材料腐蚀与防护
作者简介: 戴念维,1990年12月生,2020年6月毕业于复旦大学,获工学博士学位,副研究员,中国科学院大学研究生导师。2020-2023年就职于中国科学技术大学。2023年9月加入中国科学院上海应用物理研究所。研究方向为先进核能材料腐蚀与防护、激光增材制造合金材料的服役行为研究。针对近年新兴的增材制造合金,开展了一系列腐蚀与防护研究,阐明了部分合金微观组织结构与腐蚀行为之间的内在关系,揭示了组织结构和缺陷特征对其腐蚀行为影响的电化学机制。将飞秒激光技术创新性地应用在传统合金及增材制造合金的表面处理上,获得了优异的腐蚀防护性能。现阶段致力于国际先进四代核反应堆材料的腐蚀与防护技术研究与探索。先后主持和参与了中国博士后科学基金、国家自然科学基金和中国科学院抢占科技制高点攻坚专项任务。以第一/通讯作者在Corrosion Science、ACS Nano、Journal of The Electrochemical Society 期刊上发表论文20 余篇,ESI 高被引论文2篇。先后获得中国腐蚀与防护学会科学技术奖(自然科学类)一等奖、中国腐蚀与防护学会科学技术奖优秀论文奖等。目前担任《中国腐蚀与防护学报》、Corrosion Communication 青年编委和中国腐蚀与防护学会青年工作委员会委员。
图1  LPBF-316L不锈钢中的典型微观组织结构[13,22]
图2  LPBF-316L不锈钢中的组织结构各向异性,拉伸开裂行为特征差异和HIP处理后的组织结构及拉伸行为[26]
图3  AM制备的FeCrAl和ODS-FeCrAl合金的微观组织结构及其在LBE中的腐蚀行为特征[35,42]
[1] Yang J, Sun P J, Peng C T, et al. Frontiers and review in global nuclear energy science and technology [J]. Sci. Technol. Rev., 2024, 42: 7
doi: 10.3981/j.issn.1000-7857.2023.04.00630
[1] 杨 军, 孙培杰, 彭翠婷 等. 世界核能科技发展前沿进展 [J]. 科技导报, 2024, 42: 7
[2] Xu H J, Dai Z M, Cai X Z. Introduction to Molten Salt Reactor Science and Technology [M]. Shanghai: Shanghai Jiao Tong University Press, 2025
[2] 徐洪杰, 戴志敏, 蔡翔舟. 熔盐堆科学技术导论 [M]. 上海: 上海交通大学出版社, 2025
[3] Grape S, Svärd S J, Hellesen C, et al. New perspectives on nuclear power-generation IV nuclear energy systems to strengthen nuclear non-proliferation and support nuclear disarmament [J]. Energy Policy, 2014, 73: 815
doi: 10.1016/j.enpol.2014.06.026
[4] Zhu S Y, Yuan D Q. Study of radiation properties of structural materials for advanced nuclear energy systems [J]. Nucl. Phys. Rev., 2017, 34: 302
[4] 朱升云, 袁大庆. 先进核能系统结构材料辐照性能研究 [J]. 原子核物理评论, 2017, 34: 302
[5] Allen T R, Sridharan K, Tan L, et al. Materials challenges for generation IV nuclear energy systems [J]. Nucl. Technol., 2008, 162: 342
doi: 10.13182/NT08-A3961
[6] Wang H M, Wang Y D. Progress of laser additive manufactured high-performance metal structural materials [J]. Iron Steel Vanadium Titanium, 2024, 45: 1
[6] 王华明, 王玉岱. 高性能金属结构材料激光增材制造技术研究进展 [J]. 钢铁钒钛, 2024, 45: 1
[7] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[8] Zhao R R, Li J F. Research on laser metal 3D printing technology [J]. China Met. Bull., 2024: 107
[8] 赵瑞瑞, 李佳峰. 激光金属3D打印技术探究 [J]. 中国金属通报, 2024: 107
[9] Yu H. Exploration and research on metal 3D printing technology process [J]. Mod. Manuf. Technol. Equip., 2023, 59: 162
[9] 玉 河. 金属3D打印技术工艺探索研究 [J]. 现代制造技术与装备, 2023, 59: 162
[10] Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: A review [J]. Mater. Des., 2021, 209: 110008
doi: 10.1016/j.matdes.2021.110008
[11] Patel S, Liu Y, Siddique Z, et al. Metal additive manufacturing: Principles and applications [J]. J. Manuf. Process., 2024, 131: 1179
doi: 10.1016/j.jmapro.2024.09.101
[12] Akbari P, Zamani M, Mostafaei A. Machine learning prediction of mechanical properties in metal additive manufacturing [J]. Addit. Manuf., 2024, 91: 104320
[13] He W H, Liu Y, Yang S Y, et al. Effect of sensitization treatment on electrochemical behavior and intergranular corrosion of conventional and additively manufactured 316L stainless steels [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1331
[13] 何武豪, 刘 阳, 杨思懿 等. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 1331
doi: 10.11902/1005.4537.2024.387
[14] Dong C F, Kong D C, Zhang L. Corrosion of Metals Fabricated by Additive Manufacturing [M]. Beijing: Chemical Industry Press, 2021: 314
[14] 董超芳, 孔德成, 张 亮. 增材制造金属的腐蚀行为与机理 [M]. 北京: 化学工业出版社, 2021: 314
[15] Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2016, 102: 484
doi: 10.1016/j.corsci.2015.10.041
[16] Zhong Y, Rännar L E, Liu L F, et al. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications [J]. J. Nucl. Mater., 2017, 486: 234
doi: 10.1016/j.jnucmat.2016.12.042
[17] Shi J H, Liu H Q, Liu Z P, et al. Low-cycle fatigue behavior of nuclear-grade austenitic stainless steel fabricated by additive manufacturing [J]. Crystals, 2025, 15: 644
doi: 10.3390/cryst15070644
[18] Yang Q F, Gao S X, Chen P, et al. Current research status of additive manufacturing of 316L stainless steel powder for nuclear power [J]. J. Netshape Form. Eng., 2023, 15: 209
[18] 杨青峰, 高士鑫, 陈 平 等. 核电用316L不锈钢粉末增材制造研究现状 [J]. 精密成形工程, 2023, 15: 209
[19] Li C, Wang Q T, Yang C G, et al. Corrosion behavior of 904L super-austenitic stainless steel in simulated primary water in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 716
[19] 李 禅, 王庆田, 杨承刚 等. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 716
[20] Xu C L, Quan Q W, Wu H C, et al. Review of the effect of irradiation-assisted stress corrosion cracking on stainless steel in light water reactor environments [J/OL]. Mater. Rep., (2025-06-30).
[20] 徐超亮, 全琪炜, 武焕春 等. 轻水反应堆环境对不锈钢辐照促进应力腐蚀开裂影响综述 [J/OL]. 材料导报, (2025-06-30).
[21] Gao J X, Cao H, Kuang W J, et al. Research progress on irradiation assisted stress corrosion cracking behavior and mechanism of austenitic steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 835
[21] 高俊宣, 曹 晗, 匡文军 等. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 835
doi: 10.11902/1005.4537.2023.287
[22] Tucho W M, Lysne V H, Austbø H, et al. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L [J]. J. Alloy. Compd., 2018, 740: 910
doi: 10.1016/j.jallcom.2018.01.098
[23] Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 249: 255
doi: 10.1016/j.jmatprotec.2017.05.042
[24] Goland M, Balbaud F, Fouchereau A, et al. Corrosion behavior of additively manufactured stainless steels in nuclear environments [J]. Adv. Mater. Technol. Power Plants, 2024: 23
[25] Bozeman S C, Tucker J D, Isgor O B. Corrosion of proton irradiated 309L stainless steel claddings fabricated by directed energy deposition [A]. Proceedings of the AMPP Annual Conference + Expo [C]. Denver, 2023
[26] Rebak R B, Lou X Y. Environmental cracking and irradiation resistant stainless steels by additive manufacturing [R]. Schenectady: General Electric Company, 2018
[27] Yang J F, Hawkins L, He L F, et al. Intragranular irradiation-assisted stress corrosion cracking (IASCC) of 316L stainless steel made by laser direct energy deposition additive manufacturing: Delta ferrite-dislocation channel interaction [J]. J. Nucl. Mater., 2023, 577: 154305
doi: 10.1016/j.jnucmat.2023.154305
[28] McMurtrey M, Sun C, Rupp R E, et al. Investigation of the irradiation effects in additively manufactured 316L steel resulting in decreased irradiation assisted stress corrosion cracking susceptibility [J]. J. Nucl. Mater., 2021, 545: 152739
doi: 10.1016/j.jnucmat.2020.152739
[29] Chen Y, Alexandreanu B, Zhang X. Microtructure and low-cycle fatigue behavior of additively manufactured 316L stainless steel at 300 oC [R]. DuPage County: Argonne National Laboratory, 2023
[30] Bojinov M, Chang L T, Saario T, et al. Corrosion of 316L stainless steel produced by laser powder bed fusion and powder metallurgy in pressurized water reactor primary coolant [J]. Materialia, 2024, 34: 102055
doi: 10.1016/j.mtla.2024.102055
[31] Zhang L B, Wang H, Zhao K, et al. Corrosion behavior of 304L stainless steel by wire arc additive manufacturing in liquid lead-bismuth eutectic at 550 oC [J]. J. Nucl. Mater., 2025, 605: 155598
doi: 10.1016/j.jnucmat.2024.155598
[32] Gong X, Wan L, Gao M X, et al. Atomic-scale dissolution corrosion mechanism of additively-manufactured 316L steels in liquid lead-bismuth eutectic [J]. Acta Mater., 2025, 290: 120963
doi: 10.1016/j.actamat.2025.120963
[33] Pei J Y, Chen H, Zhang R Q. Study on the microstructure and nano-hardness evolution of FeCrAl alloy under ion irradiation [J]. Nucl. Power Eng., 2025, 46(suppl.): 145
[33] 裴静远, 陈 寰, 张瑞谦. FeCrAl合金离子辐照下微观结构与纳米硬度演化研究 [J]. 核动力工程, 2025, 46(): 145
[34] Hoffman A K, Umretiya R V, Gupta V K, et al. Oxidation resistance in 1200 oC steam of a FeCrAl alloy fabricated by three metallurgical processes [J]. JOM, 2022, 74: 1690
doi: 10.1007/s11837-022-05209-z
[35] Umretiya R V, Qu H Z, Yin L, et al. Corrosion behavior of additively manufactured FeCrAl in out-of-pile light water reactor environments [J]. npj Mater. Degrad., 2024, 8: 88
doi: 10.1038/s41529-024-00499-x
[36] Hosemann P, Frazer D, Stergar E, et al. Twin boundary-accelerated ferritization of austenitic stainless steels in liquid lead-bismuth eutectic [J]. Scr. Mater., 2016, 118: 37
doi: 10.1016/j.scriptamat.2016.02.029
[37] Lambrinou K, Charalampopoulou E, Van Der Donck T, et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 oC [J]. J. Nucl. Mater., 2017, 490: 9
doi: 10.1016/j.jnucmat.2017.04.004
[38] Shi X M, Tan J B, Zhang Z Y, et al. A review on fatigue behavior of candidate structure materials for lead-cooled fast reactors in liquid lead-bismuth eutectic [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1187
[38] 史轩铭, 谭季波, 张兹瑜 等. 铅冷快堆候选结构材料液态铅铋共晶环境中疲劳行为研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 1187
doi: 10.11902/1005.4537.2024.358
[39] Zhang X Y, Li C, Wang Y X, et al. Research progress on liquid metal corrosion behavior of structural steels for lead fast reactor [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1216
[39] 张心怡, 李 聪, 汪禹熙 等. 铅基堆结构材料液态金属腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1216
doi: 10.11902/1005.4537.2022.338
[40] Zhu Z G, Tan J B, Zhang Z Y, et al. Corrosion behaviors of ODS-FeCrAl in oxygen-saturated lead-bismuth eutectic at 550 oC: Effects of grain boundaries and minor elements [J]. J. Nucl. Mater., 2023, 587: 154710
doi: 10.1016/j.jnucmat.2023.154710
[41] Wang H R, Yu H, Liu J R, et al. Characterization and corrosion behavior of Al-added high Mn ODS austenitic steels in oxygen-saturated lead-bismuth eutectic [J]. Corros. Sci., 2022, 209: 110818
doi: 10.1016/j.corsci.2022.110818
[42] Li J S, Wang Y F, Chai J J, et al. Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) [J]. J. Nucl. Mater., 2025, 604: 155516
doi: 10.1016/j.jnucmat.2024.155516
[43] Couet A. Integrated high-throughput research in extreme environments targeted toward nuclear structural materials discovery [J]. J. Nucl. Mater., 2022, 559: 153425
doi: 10.1016/j.jnucmat.2021.153425
[44] Chen J, Zhou X Y, Wang W L, et al. A review on fundamental of high entropy alloys with promising high-temperature properties [J]. J. Alloy. Compd., 2018, 760: 15
doi: 10.1016/j.jallcom.2018.05.067
[45] Lin Y P, Yang T F, Lang L, et al. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage [J]. Acta Mater., 2020, 196: 133
doi: 10.1016/j.actamat.2020.06.027
[46] Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing [J]. Corros. Sci., 2020, 177: 108954
doi: 10.1016/j.corsci.2020.108954
[47] Ren J, Mahajan C, Liu L, et al. Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy [J]. Metals, 2019, 9: 1029
doi: 10.3390/met9101029
[48] Peng H P, Lin Z H, Li R D, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy- a comparison between selective laser melting and cast [J]. Front. Mater., 2020, 7: 244
doi: 10.3389/fmats.2020.00244
[1] 兰博韬, 吴斌, 明洪亮, 王俭秋, 韩恩厚. 选区激光熔化奥氏体不锈钢高温高压水中应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] 周丽, 曹晓蝶, 来佑彬, 丁旺旺, 韦博鑫, 吴嘉俊. 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[3] 衣俊达, 冷傲, 宫得伦, 韦博鑫. 低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[4] 张俊男, 彭灿, 付琦, 张亮, 宋光铃. 海洋环境中铜绿假单胞菌对增材制造Al-Mg-Sc-Zr合金腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
[5] 祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅. 增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
[6] 张泽群, 骆鑫杰, 刘鹏飞, 董凯, 卓先勤, 吴俊升, 张博威. TiC颗粒对激光粉末床熔融Al-Mg-Sc-Zr合金的微观结构与腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 92-102.
[7] 李柯萱, 王义朋, 廖伯凯. 电弧送丝增材、激光选区熔化增材和传统TC4钛合金钝化行为的对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[8] 庞曰艺, 张立波, 宁方强, 赵志坡, 闫宏, 刘佳. δ-铁素体对增材制造304L不锈钢液态铅铋腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 193-199.
[9] 杨潇文, 陈泽浩, 杨莎莎, 王群昌, 王金龙, 陈明辉, 王福会. 镍基单晶高温合金N5及其纳米晶涂层的短期热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 252-260.
[10] 王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[11] 张德平, 闫立震, 于洋, 杨广明, 代春宇, 孟乐, 徐博, 刘智勇. CO2 驱采油井复杂环境中N80油管断裂失效机理[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[12] 李科, 李天雷, 曹晓燕, 姜流, 王雅熙, 肖泽渝, 钟显康. 316L不锈钢焊接接头在含S-H2S环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(6): 1725-1733.
[13] 郭耀威, 艾士民, 房大然, 林小娉, 杨连威, 郑哲皓. 高压凝固Mg-xAl (x = 3, 5, 7, 9, 12)合金组织结构及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[14] 蔡科涛, 季磊, 张震, 冯强, 邓伟林, 兰贵红, 何莎, 赵占勇, 白培康. Mg-Gd-Y-Zn-Zr合金在NaClNa2SO4 溶液中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[15] 谷松伦, 张繁, 黄国胜, 姜丹, 董国君. 冷喷涂Cu-Ti伪合金防污材料的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.