Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1351-1360     CSTR: 32134.14.1005.4537.2024.335      DOI: 10.11902/1005.4537.2024.335
  研究报告 本期目录 | 过刊浏览 |
CO2 压力对含杂质超临界CO2 输送管线X65钢应力腐蚀开裂敏感性的影响
程璐瑶1, 徐彦磊2, 李家玮1, 孙冲1(), 林学强1, 孙建波1
1 中国石油大学(华东)材料科学与工程学院 青岛 266580
2 中国石油天然气管道科学研究院有限公司 廊坊 065000
Effect of CO2 Pressure on Stress Corrosion Cracking Susceptibility of X65 Pipeline Steel Used for Transporting Impure Supercritical CO2
CHENG Luyao1, XU Yanlei2, LI Jiawei1, SUN Chong1(), LIN Xueqiang1, SUN Jianbo1
1 School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2 China Petroleum Pipeline Research Institute Co., Ltd., Langfang 065000, China
引用本文:

程璐瑶, 徐彦磊, 李家玮, 孙冲, 林学强, 孙建波. CO2 压力对含杂质超临界CO2 输送管线X65钢应力腐蚀开裂敏感性的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1351-1360.
Luyao CHENG, Yanlei XU, Jiawei LI, Chong SUN, Xueqiang LIN, Jianbo SUN. Effect of CO2 Pressure on Stress Corrosion Cracking Susceptibility of X65 Pipeline Steel Used for Transporting Impure Supercritical CO2[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1351-1360.

全文: PDF(14564 KB)   HTML
摘要: 

通过慢应变速率拉伸实验和四点弯应力腐蚀实验,结合腐蚀产物膜电化学阻抗测试和微观表征,研究了X65管线钢在低含水及含O2、H2S、SO2和NO2杂质的超临界CO2环境中的应力腐蚀行为,探讨了CO2压力变化对X65管线钢应力腐蚀开裂(SCC)敏感性的影响。结果表明:在7.5 MPa至14 MPa CO2压力范围内,X65管线钢在低含水及多种杂质共存的超临界CO2环境中具有很低的SCC敏感性,在测试周期内未发生SCC。但是,X65管线钢因受到均匀腐蚀作用会产生轻微的塑性损失,进而存在一定程度的SCC敏感性。随着CO2压力由7.5 MPa升高至14 MPa,X65管线钢的SCC敏感性呈先降低后升高的变化趋势,这与CO2压力变化引起的X65管线钢腐蚀程度不同密切相关。由于CO2压力变化可以导致X65管线钢表面沉积的液相中腐蚀性物质含量和形成的腐蚀产物膜保护性发生改变,因而在应力和含杂质CO2的耦合作用下X65管线钢的腐蚀速率随CO2压力升高呈先降低后升高的变化规律。

关键词 X65管线钢超临界CO2CO2压力应力腐蚀    
Abstract

In this study, the stress corrosion cracking behavior of X65 pipeline steel exposed to a supercritical CO2 environment with low water content and co-existence of O2, SO2, NO2, and H2S impurities was studied by means of slow strain rate tensile test, four-point-bending stress corrosion test, electrochemical measurement and surface analysis techniques. The effect of CO2 pressure change on the susceptibility of X65 pipeline steel to stress corrosion cracking (SCC) was discussed. The results show that X65 pipeline steel has a very low SCC susceptibility within the CO2 pressure range of 7.5 MPa to 14 MPa when being exposed to supercritical CO2 environment with low water content and co-existence of multiple impurities. X65 pipeline steel does not crack under the coupling effect of stress and impurity-containing CO2 streams during the overall test duration. However, X65 pipeline steel suffers from the slight ductility loss due to the corrosion effect, thereby demonstrating a certain SCC susceptibility. The SCC susceptibility of X65 pipeline steel decreases first and then increases as the rise of CO2 pressure from 7.5 MPa to 14 MPa, which is closely associated with the difference of corrosion degree caused by CO2 pressure change. When X65 pipeline steel is exposed to supercritical CO2 environment containing impurities, the content of corrosive substances in the formed aqueous phase and the protectiveness of the corrosion product film formed on the steel surface are changed with the variation of CO2 pressure. Therefore, under the coupling effect of stress and impurity-containing CO2 streams, the corrosion rate of X65 steel decreases first and then increases with the increase of CO2 pressure.

Key wordsX65 pipeline steel    supercritical CO2    CO2 pressure    stress corrosion
收稿日期: 2024-10-12      32134.14.1005.4537.2024.335
ZTFLH:  TG174  
基金资助:国家自然科学基金(52001328);中央高校基本科研业务费专项(20CX06075A)
通讯作者: 孙冲,E-mail:sunchong@upc.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: SUN Chong, E-mail: sunchong@upc.edu.cn
作者简介: 程璐瑶,女,2000年生,硕士生
图1  X65管线钢的金相组织
图2  慢应变速率拉伸试样尺寸
ConditionCO2 pressure / MPaTemperature / ºCO2 / %H2S / %NO2 / %SO2 / %H2O / %
17.5500.010.010.010.010.01
210
314
表1  慢应变速率拉伸和四点弯应力腐蚀实验条件
图3  四点弯应力腐蚀实验装置示意图
图4  不同压力下在含杂质的超临界CO2环境中X65管线钢的应力-应变曲线
图5  在含杂质超临界CO2环境中不同CO2压力下X65管线钢的断面收缩率(Ψ)和SCC敏感性因子(IΨ-SCC)
图6  在空气和不同压力的含杂质超临界CO2环境中X65管线钢的拉伸断口形貌
图7  在不同压力的含杂质超临界CO2环境中施加520 MPa应力并暴露240 h后X65管线钢的应力腐蚀速率
图8  在不同CO2压力的含杂质超临界CO2环境中应力腐蚀240 h后及去除腐蚀产物膜后X65管线钢的表面宏观形貌
图9  X65管线钢在不同CO2压力的含杂质超临界CO2环境中应力腐蚀240 h后的表面、截面SEM形貌和截面EDS面扫描分析
图10  X65管线钢在不同压力的含杂质超临界CO2环境中应力腐蚀240 h后表面腐蚀产物的Raman光谱
Chemical7.5 MPa CO210 MPa CO214 MPa CO2
substanceMass / gMass fraction / %Mass / gMass fraction / %Mass / gMass fraction / %
H2O7.000 × 10-495.6353.500 × 10-495.0271.000 × 10-394.595
CO2(aq)3.260 × 10-54.3241.860 × 10-54.9415.936 × 10-55.379
O2(aq)2.441 × 10-103.242 × 10-52.064 × 10-105.486 × 10-51.012 × 10-99.169 × 10-5
H2S(aq)8.805 × 10-91.169 × 10-34.650 × 10-91.236 × 10-31.359 × 10-81.232 × 10-3
NO2(aq)3.738 × 10-84.950 × 10-31.365 × 10-83.622 × 10-32.645 × 10-82.394 × 10-3
SO2(aq)1.936 × 10-77.224 × 10-37.954 × 10-85.455 × 10-31.863 × 10-73.948 × 10-3
H+2.329 × 10-93.093 × 10-41.019 × 10-92.708 × 10-42.585 × 10-92.343 × 10-4
HCO3-8.425 × 10-91.119 × 10-35.471 × 10-91.454 × 10-32.052 × 10-81.860 × 10-3
HS-5.952 × 10-137.902 × 10-83.586 × 10-139.529 × 10-81.222 × 10-121.107 × 10-7
HSO3-1.761 × 10-72.339 × 10-27.468 × 10-81.985 × 10-21.806 × 10-71.637 × 10-2
表2  不同CO2压力的含杂质超临界CO2环境中形成液膜中CO2及杂质组分和主要离子的质量与浓度
图11  在不同压力的含杂质超临界CO2环境中X65管线钢表面腐蚀产物膜的电化学阻抗图谱及等效电路图
CO2 pressure / MPaRs / Ω·cm2Rct / Ω·cm2Y0(Qdl) / Ω-1·cm-2·S nn(Qdl)
7.513.86349.20.0330.721
1014.04491.30.0510.858
1413.88151.40.0270.705
表3  在不同CO2压力的含杂质超临界CO2环境中X65管线钢表面腐蚀膜的EIS拟合数据
[1] Truong T H, Lin B W, Lo C H, et al. Possible pathways for low carbon transitions: investigating the efforts of oil companies in CCUS technologies [J]. Energy Strategy Rev., 2024, 54: 101421
[2] Wei Y M, Kang J N, Liu L C, et al. A proposed global layout of carbon capture and storage in line with a 2 ℃ climate target [J]. Nat. Clim. Change, 2021, 11: 112
[3] Li Y, Zhao Q M, Xue Z J. Construction and innovative practice of new generation oil and gas development technology system [J]. J. China Univ. Petrol. (Ed. Nat. Sci.), 2023, 47: 45
[3] 李 阳, 赵清民, 薛兆杰. 新一代油气开发技术体系构建与创新实践 [J]. 中国石油大学学报(自然科学版), 2023, 47: 45
[4] Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines [J]. Int. J. Greenh. Gas Con., 2013, 17: 534
[5] Lu S J, Zhang J J, Yang F, et al. Progress and future development trend of CO2 pipeline transportation technology [J]. J. Nanjing Univ. (Nat. Sci.), 2022, 58: 944
[5] 陆诗建, 张娟娟, 杨 菲 等. CO2管道输送技术进展与未来发展浅析 [J]. 南京大学学报(自然科学), 2022, 58: 944
[6] De Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations [J]. Int. J. Greenh. Gas Con., 2008, 2: 478
[7] Sonke J, Bos W M, Paterson S J. Materials challenges with CO2 transport and injection for carbon capture and storage [J]. Int. J. Greenh. Gas Con., 2022, 114: 103601
[8] Onyebuchi V E, Kolios A, Hanak D P, et al. A systematic review of key challenges of CO2 transport via pipelines [J]. Renew. Sust. Energ. Rev., 2018, 81: 2563
[9] Sun C, Yan X L, Sun J B, et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]. Corros. Sci., 2022, 209: 110729
[10] Wang W H, Guang Y, Liu W, et al. Experimental investigation of stress corrosion on supercritical CO2 transportation pipelines against leakage for CCUS applications [J]. Energy Rep., 2023, 9: 266
[11] Sun C, Yang W J, Sun J B, et al. Hydrogen permeation and SCC susceptibility of X70 pipeline steel in CO2-saturated water environment containing acidic impurity [J]. Corros. Sci., 2024, 236: 112259
[12] Li W Y, Cao R H, Xu L N, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
[13] Kairy S K, Zhou S, Turnbull A, et al. Corrosion of pipeline steel in dense phase CO2 containing impurities: A critical review of test methodologies [J]. Corros. Sci., 2023, 214: 110986
[14] Zeng Y M, Li K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines [J]. Corros. Sci., 2020, 165: 108404
[15] Li K Y, Zeng Y M. Long-term corrosion and stress corrosion cracking of X65 steel in H2O-saturated supercritical CO2 with SO2 and O2 impurities [J]. Constr. Build. Mater., 2023, 362: 129746
[16] Li K Y, Zeng Y M, Luo J L. Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation [J]. Corros. Sci., 2021, 190: 109639
[17] Sui P, Sun J B, Hua Y, et al. Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S [J]. Int. J. Greenh. Gas Con., 2018, 73: 60
[18] Yuan Y, Xiang Y, Li C, et al. Research progress on corrosion of CO2 injection well tubing in CCUS system [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 15
[18] 原 玉, 向 勇, 李 晨 等. CCUS系统中CO2注入井管材腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 15
[19] Li Y X, Liu X H, Wang C L, et al. Research progress on corrosion behavior of gaseous CO2 transportation pipelines containing impurities [J]. Acta Metall. Sin., 2021, 57: 283
[19] 李玉星, 刘兴豪, 王财林 等. 含杂质气态CO2输送管道腐蚀研究进展 [J]. 金属学报, 2021, 57: 283
doi: 10.11900/0412.1961.2020.00165
[20] Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline Steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
[20] 胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576
doi: 10.11902/1005.4537.2023.227
[21] Morland B H, Norby T, Tjelta M, et al. Effect of SO2, O2, NO2, and H2O concentrations on chemical reactions and corrosion of carbon steel in dense phase CO2 [J]. Corrosion, 2019, 75: 1327
doi: 10.5006/3111
[22] Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 111
[22] 李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 111
doi: 10.11902/1005.4537.2022.028
[23] Dai H L, Tang J H, Shi S W, et al. Effects of pre-strain on hydrogen-induced stress corrosion cracking behavior of Q345R steel in hydrofluoric acid vapor environment [J]. Corros. Commun., 2024, 16: 71
[24] Wei L, Zhang Y C, Pang X L, et al. Corrosion behaviors of steels under supercritical CO2 conditions [J]. Corros. Rev, 2015, 33: 151
[25] Sun C, Liu J X, Sun J B, et al. Corrosion behaviors of X65 steel in gaseous CO2 environment containing impurities [J]. J. China Univ. Petrol. (Ed. Nat. Sci.), 2022, 46: 129
[25] 孙 冲, 刘建新, 孙建波 等. 含杂质气态CO2环境中X65钢腐蚀行为 [J]. 中国石油大学学报(自然科学版), 2022, 46: 129
[26] Kong D J, Wu Y Z, Long D. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions [J]. J. Iron Steel Res. Int., 2013, 20: 40
[27] Shi R J, Tu Y Q, Gao K W, et al. High stress corrosion cracking resistance of in-situ nanoparticle strengthened steel [J]. Corros. Commun., 2022, 5: 14
[28] Zhang X, Xiao K, Dong C F, et al. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO 4 2 - [J]. Eng. Fail. Anal., 2011, 18: 1981
[29] Nie X H, Li X G, Du C W, et al. Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy [J]. J. Raman Spectrosc., 2009, 40: 76
[30] El Mendili Y, Bardeau J F, Randrianantoandro N, et al. Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation [J]. J. Phys. Chem., 2012, 116C: 23785
[31] Chio C H, Sharma S K, Muenow D W. Micro-Raman studies of hydrous ferrous sulfates and jarosites [J]. Spectrochim. Acta, 2005, 61A: 2428
[32] Chio C H, Sharma S K, Muenow D W. The hydrates and deuterates of ferrous sulfate (FeSO4): A Raman spectroscopic study [J]. J. Raman Spectrosc., 2007, 38: 87
[33] Morland B H, Dugstad A, Svenningsen G. Experimental based CO2 transport specification ensuring material integrity [J]. Int. J. Greenh. Gas Con., 2022, 119: 103697
[34] Quan Q, Zhang Y, Lei M, et al. Corrosion behavior of P110 steel in vapor-liquid phase of H2S/CO2 coexistence system [J]. Mater. Prot., 2024, 57: 52
[34] 全 青, 张 源, 雷 鸣 等. H2S/CO2共存体系气液相中P110钢的腐蚀行为 [J]. 材料保护, 2024, 57: 52
[35] Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
[36] De Azevedo Rodrigues T R S, Marcolino J B, De Moraes M K, et al. Influence of CO2 subcritical and supercritical pressures on the protective properties of corrosion product scales formed on X65 steel [J]. J. Supercrit. Fluid., 2024, 206: 106184
[1] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[2] 李维鹏, 罗坤杰, 王惠生, 陈嘉诚, 韩姚磊, 庞晓露, 彭群家, 乔利杰. 沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
[3] 吴宇航, 陈旭, 王首德, 刘畅, 刘杰. 直流电作用下X70钢在近中性土壤中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[4] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[5] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[6] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[7] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[8] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[9] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[10] 胡丽华, 衣华磊, 杨维健, 孙冲, 孙建波. 水含量对超临界CO2 输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[11] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[12] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[13] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[14] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[15] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.