Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 489-496     CSTR: 32134.14.1005.4537.2024.040      DOI: 10.11902/1005.4537.2024.040
  研究报告 本期目录 | 过刊浏览 |
直流电作用下X70钢在近中性土壤中应力腐蚀行为研究
吴宇航1, 陈旭1(), 王首德2, 刘畅2, 刘杰1
1.辽宁石油化工大学石油天然气工程学院 抚顺 113001
2.中国石油天然气股份有限公司大庆炼化分公司 大庆 163411
Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current
WU Yuhang1, CHEN Xu1(), WANG Shoude2, LIU Chang2, LIU Jie1
1.College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
2.China National Petroleum Corporation Daqing Refining & Chemical Company, Daqing 163411, China
引用本文:

吴宇航, 陈旭, 王首德, 刘畅, 刘杰. 直流电作用下X70钢在近中性土壤中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
Yuhang WU, Xu CHEN, Shoude WANG, Chang LIU, Jie LIU. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 489-496.

全文: PDF(9618 KB)   HTML
摘要: 

采用极化曲线、电化学阻抗谱技术和慢应变速率拉伸方法,研究了直流电(DC)作用下X70钢在近中性土壤模拟溶液中的应力腐蚀敏感性。通过对断口表面形貌观察,分析了不同DC下X70钢的开裂机制。结果表明:随着DC密度增加,X70钢阳极极化程度增加,表面生成的氧化膜具有一定的保护作用。当DC密度不大于0.5 mA/cm2时,腐蚀速率随DC密度增加而降低。DC密度增加至1 mA/cm2时,腐蚀产物膜不能阻止阳极溶解,腐蚀速率急剧增大。无DC时,X70钢开裂机制为氢致开裂。DC和应力协同作用下,DC导致裂纹尖端持续发生阳极溶解。随DC密度增加,X70钢在近中性土壤模拟溶液中的开裂机制由氢致开裂转变为阳极溶解。

关键词 X70钢近中性溶液直流电流应力腐蚀开裂机制    
Abstract

With the development of urban construction, it is inevitable that high voltage direct current transmission projects and buried oil and gas pipelines often share the proximity of public space corridors. Therefore, the potential danger of corrosion and damage to the adjacent buried oil and gas pipelines due to current leakage of transmission lines is becoming more and more prominent. In this paper, the stress corrosion sensitivity of X70 steel in a simulated solution of near-neutral soil under direct current (DC) was studied by means of electrochemical polarization curve, electrochemical impedance spectroscopy and slow strain rate tensile method. The results showed that the anode polarization of X70 steel increased with the increase in DC density. When the DC density was less than 0.5 mA/cm2, the corrosion rate decreased with the increase in DC density. When the DC density increased to 1 mA/cm2, the corrosion product film could not prevent the anodic dissolution and the corrosion rate increased sharply. In the absence of DC, the cracking mechanism of X70 steel was hydrogen induced cracking. Under the synergistic effect of DC and stress, DC led to continuous anodic dissolution at the crack tip. With the increase in DC density, the cracking mechanism of X70 steel in the simulated solution of near-neutral pH changed from hydrogen induced cracking to anodic dissolution.

Key wordsX70 pipeline steel    near-neutral solution    direct current    stress corrosion    cracking mechanism
收稿日期: 2024-01-29      32134.14.1005.4537.2024.040
ZTFLH:  TG147  
基金资助:教育部“春晖”国际合作计划项目,辽宁省教育厅面上项目(LJKZ0416);辽宁省教育厅项目(LJ212410148059)
通讯作者: 陈旭,E-mail:chenxu@lnpu.edu.cn,研究方向为金属材料腐蚀与防护
Corresponding author: CHEN Xu, E-mail: chenxu@lnpu.edu.cn
作者简介: 吴宇航,男,1996年生,硕士生
图1  X70钢的金相组织
图2  电化学测量实验装置示意图
图3  SSRT试件示意图
图4  不同DC下X70钢在NS4溶液中的开路电位
图5  不同DC密度下X70钢在NS4溶液中的极化曲线
图6  不同DC密度下X70钢在NS4溶液中的腐蚀电流密度
图7  不同电流密度下X70钢在NS4溶液中的EIS曲线
图8  等效电路图
DC / mA·cm-2Rs / Ω·cm2Qf / F·cm2n1Rf / Ω·cm2Qdl / F·cm2n2Rct / Ω·cm2
01224.757 × 10-40.78490.51.117 × 10-40.733047
0.1342.88.885 × 10-40.8511732.474 × 10-40.886170
0.5538.41.080 × 10-40.9619995.675 × 10-4-7133
1599.66.649 × 10-40.6814751.252 × 10-4-1627
表1  不同电流密度下X70钢在NS4溶液中的EIS拟合结果
图9  不同DC密度下X70钢在NS4溶液中应力-应变曲线
图10  不同DC密度下X70钢在NS4溶液中的延伸率和断面收缩率
图11  X70钢在不同DC密度下NS4溶液中断裂时间
图12  X70 钢在不同DC密度下NS4 溶液中主断口和侧断口形貌
1 Li S B. Study on corrosion behavior of X70 steel under the synergistic action of direct current and SRB [D]. Fushun: Liaoning Petrochemical University, 2020
1 李帅兵. 直流电和SRB协同作用下X70钢腐蚀行为研究 [D]. 抚顺: 辽宁石油化工大学, 2020
2 Sun J G, Cao G F, Han C C, et al. Influence of HVDC transmission system ground electrod on west-east gas pipeline [J]. Corros. Prot., 2017, 38: 631
2 孙建桄, 曹国飞, 韩昌柴 等. 高压直流输电系统接地极对西气东输管道的影响 [J]. 腐蚀与防护, 2017, 38: 631
3 Wang L W, Tang X H, Wang X H, et al. DC stray current corrosion behavior of pipeline steel based on fractal theory [J]. Corros. Prot., 2014, 35: 218
3 王力伟, 唐兴华, 王新华 等. 基于分形的管线钢直流杂散电流腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 218
4 Goidanich S, Lazzari L, Ormellese M. AC corrosion-Part 1: Effects on overpotentials of anodic and cathodic processes [J]. Corros. Sci., 2010, 52: 491
5 Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
6 Muralidharan S, Kim D K, Ha T H, et al. Influence of alternating, direct and superimposed alternating and direct current on the corrosion of mild steel in marine environments [J]. Desalination, 2007, 216: 103
7 Zhu L W, Yang B K, Liu M, et al. Stray current corrosion behavior of Q235 carbon steel grounding material [J]. J. Hebei Univ. (Nat. Sci.), 2016, 36: 494
7 祝郦伟, 杨丙坤, 刘 敏 等. Q235扁钢接地材料杂散电流腐蚀行为研究 [J]. 河北大学学报(自然科学版), 2016, 36: 494
doi: 10.3969/j.issn.1000-1565.2016.05.008
8 Brichau F, Deconinck J, Driesens T. Modeling of underground cathodic protection stray currents [J]. Corrosion, 1996, 52: 480
9 Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels [J]. Corrosion, 1978, 34: 428
10 Scott P M. Environmentally induced cracking [J]. Constr. Build. Mater., 1990, 4: 98
11 Qian S, Cheng Y F. Accelerated corrosion of pipeline steel and reduced cathodic protection effectiveness under direct current interference [J]. Constr. Build. Mater., 2017, 148: 675
12 Yu J F, Zhang M. Corrosion behavior of Q235 steel in Yingtan acid soil under DC stray current effects [J]. Mater. Prot., 2015, 48(9): 14
12 余建飞, 张 明. Q235钢在鹰潭酸性土壤中不同强度直流杂散电流作用下的腐蚀行为 [J]. 材料保护, 2015, 48(9): 14
13 Wang J, Li Z L, Cui G, et al. Corrosion behaviors of X70 steel under direct current interference [J]. Anti-Corros. Methods Mater., 2019, 66: 307
14 Cui G, Li Z L, Yang C, et al. The influence of DC stray current on pipeline corrosion [J]. Pet. Sci., 2016, 13: 135
15 Cui G, Li Z L, Yang C, et al. Study on the interference between cathodic protection systems of gas station and long distance trunk pipeline [J]. Anti-Corros. Methods Mater., 2016, 63: 405
16 Chen S. Study on SCC behavior of X70 steel in near-neutral pH solution under the synergistic effect of DC and SRB [D]. Fushun: Liaoning Petrochemical University, 2019
16 陈 硕. 直流电和硫酸盐还原菌协同作用下X70钢在近中性pH值溶液中应力腐蚀行为研究 [D]. 抚顺: 辽宁石油化工大学, 2019
17 Zhu M, Du C W, Li X G, et al. Stress corrosion cracking of X80 pipeline steel under various alternating current frequencies in high-pH carbonate/bicarbonate solution [J]. Corrosion, 2014, 70: 1181
18 Wan H X, Song D D, Cai Y, et al. The AC corrosion and SCC mechanism of X80 pipeline steel in near-neutral pH solution [J]. Eng. Failure Analy., 2020, 118: 104904
19 Chen Z P, Koleva D, Van Breugel K. A review on stray current-induced steel corrosion in infrastructure [J]. Corros. Rev., 2017, 35: 397
20 Ma Z Y, Wu W, Zhao P X, et al. Effect of DC currents and strain on corrosion of X80 steel in a near-neutral environment [J]. Metals, 2021, 11: 1601
21 Capelle J, Dmytrakh I, Pluvinage G. Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength [J]. Corros. Sci., 2010, 52: 1554
22 Eslami A, Fang B, Kania R, et al. Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment [J]. Corros. Sci., 2010, 52: 3750
23 Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines [J]. Electrochim. Acta, 2007, 52: 8111
24 Lu B T, Luo J L, Norton P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH [J]. Acta Mater., 2009, 57: 41
25 Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution [J]. Corros. Sci., 2009, 51: 1714
[1] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[2] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[3] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[4] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[5] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[6] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[7] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[8] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[9] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[10] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[11] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[12] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[13] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[14] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[15] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.