CO2 压力对含杂质超临界CO2 输送管线X65钢应力腐蚀开裂敏感性的影响
Effect of CO2 Pressure on Stress Corrosion Cracking Susceptibility of X65 Pipeline Steel Used for Transporting Impure Supercritical CO2
通讯作者: 孙冲,E-mail:sunchong@upc.edu.cn,研究方向为金属腐蚀与防护
收稿日期: 2024-10-12 修回日期: 2024-12-13
基金资助: |
|
Corresponding authors: SUN Chong, E-mail:sunchong@upc.edu.cn
Received: 2024-10-12 Revised: 2024-12-13
Fund supported: |
|
作者简介 About authors
程璐瑶,女,2000年生,硕士生
通过慢应变速率拉伸实验和四点弯应力腐蚀实验,结合腐蚀产物膜电化学阻抗测试和微观表征,研究了X65管线钢在低含水及含O2、H2S、SO2和NO2杂质的超临界CO2环境中的应力腐蚀行为,探讨了CO2压力变化对X65管线钢应力腐蚀开裂(SCC)敏感性的影响。结果表明:在7.5 MPa至14 MPa CO2压力范围内,X65管线钢在低含水及多种杂质共存的超临界CO2环境中具有很低的SCC敏感性,在测试周期内未发生SCC。但是,X65管线钢因受到均匀腐蚀作用会产生轻微的塑性损失,进而存在一定程度的SCC敏感性。随着CO2压力由7.5 MPa升高至14 MPa,X65管线钢的SCC敏感性呈先降低后升高的变化趋势,这与CO2压力变化引起的X65管线钢腐蚀程度不同密切相关。由于CO2压力变化可以导致X65管线钢表面沉积的液相中腐蚀性物质含量和形成的腐蚀产物膜保护性发生改变,因而在应力和含杂质CO2的耦合作用下X65管线钢的腐蚀速率随CO2压力升高呈先降低后升高的变化规律。
关键词:
In this study, the stress corrosion cracking behavior of X65 pipeline steel exposed to a supercritical CO2 environment with low water content and co-existence of O2, SO2, NO2, and H2S impurities was studied by means of slow strain rate tensile test, four-point-bending stress corrosion test, electrochemical measurement and surface analysis techniques. The effect of CO2 pressure change on the susceptibility of X65 pipeline steel to stress corrosion cracking (SCC) was discussed. The results show that X65 pipeline steel has a very low SCC susceptibility within the CO2 pressure range of 7.5 MPa to 14 MPa when being exposed to supercritical CO2 environment with low water content and co-existence of multiple impurities. X65 pipeline steel does not crack under the coupling effect of stress and impurity-containing CO2 streams during the overall test duration. However, X65 pipeline steel suffers from the slight ductility loss due to the corrosion effect, thereby demonstrating a certain SCC susceptibility. The SCC susceptibility of X65 pipeline steel decreases first and then increases as the rise of CO2 pressure from 7.5 MPa to 14 MPa, which is closely associated with the difference of corrosion degree caused by CO2 pressure change. When X65 pipeline steel is exposed to supercritical CO2 environment containing impurities, the content of corrosive substances in the formed aqueous phase and the protectiveness of the corrosion product film formed on the steel surface are changed with the variation of CO2 pressure. Therefore, under the coupling effect of stress and impurity-containing CO2 streams, the corrosion rate of X65 steel decreases first and then increases with the increase of CO2 pressure.
Keywords:
本文引用格式
程璐瑶, 徐彦磊, 李家玮, 孙冲, 林学强, 孙建波.
CHENG Luyao, XU Yanlei, LI Jiawei, SUN Chong, LIN Xueqiang, SUN Jianbo.
目前,有关超临界CO2输送管道内腐蚀的研究报道众多,主要关注杂质组分、管输压力及温度等因素对管道腐蚀规律及机理的影响,很少涉及应力的影响。在应力作用下,力学-电化学耦合效应可以导致碳钢的腐蚀电位负移,提高其腐蚀速率,同时更容易造成碳钢表面电化学活性的不均匀性,造成碳钢局部腐蚀甚至SCC[9]。考虑到超临界CO2输送环境的特殊性,有些学者讨论和强调CO2输送管道潜在的SCC风险[8~13],但受限于相关实验研究的不足,尚不能完全明晰超临界CO2输送管道的SCC敏感性及机理。从近年研究报道来看,一些研究认为X65管线钢在含SO2/O2的水饱和超临界CO2环境中具有很低的SCC敏感性[14~16]。而Wang等[10]研究认为X70管线钢在含SO2的水饱和超临界CO2环境中具有较高的SCC敏感性,尤其是在SO2和O2杂质共存的环境中其SCC敏感性显著增加,主要发生氢致开裂型SCC。Sun等[9]研究表明在含O2、SO2或NO2的水饱和超临界CO2环境中X65管线钢的SCC敏感性与杂质引起的电化学腐蚀程度密切相关;相比O2,NO2和SO2由于其更强的腐蚀作用显著增加X65管线钢的SCC敏感性;在含NO2环境中局部阳极溶解和应力的耦合作用主导X65管线钢的SCC过程。而在含SO2环境中,X65管线钢的SCC过程受局部阳极溶解、氢脆和应力的共同控制[11]。显然,对有关含杂质的超临界CO2输送管道的SCC敏感性及机理的认识仍存在争议。此外,上述有限的研究也主要聚焦于杂质组分的影响方面。然而,CO2管道运行参数(例如,压力和温度等)也是影响管道内腐蚀的重要因素[13,17~19],目前尚不清楚其如何影响管线钢的SCC行为。值得注意的是,上述研究主要源于水饱和超临界CO2体系[9~12,14~19],这与低含水(水不饱和)的超临界CO2输送体系的实际腐蚀情形差异很大。由于上述两种体系中水含量的差异,管线钢的腐蚀速率、腐蚀形态及腐蚀机理均存在很大不同[20],这必然造成其SCC敏感性及机理的显著变化。尤其是,随着未来CCUS工程项目由百万吨级向千万吨级发展,来自不同捕集源头的CO2汇入同一条管道输送很可能成为新常态,多碳源汇集的CO2流体中会不可避免地增多杂质的种类,必然导致CO2管道面临多种杂质共存的情况[4,21]。因此,有必要研究低含水-多种杂质共存的超临界CO2环境中管线钢的应力腐蚀行为,评估其SCC敏感性,为含杂质的超临界CO2输送管道的内腐蚀控制提供科学依据。
鉴于此,本文针对低含水及含O2、SO2、NO2和H2S杂质的超临界CO2腐蚀环境,利用慢应变速率拉伸实验、四点弯应力腐蚀实验、电化学阻抗测试及微观表面分析技术,重点研究在上述环境中X65管线钢在不同管输CO2压力条件下的应力腐蚀行为,探明CO2压力变化对X65管线钢SCC敏感性的影响,并分析X65管线钢在不同CO2压力的含杂质的超临界CO2环境中应力腐蚀差异的原因。本文研究结果不仅有助于增进对含杂质的超临界CO2输送管道应力腐蚀风险的认识,也可为超临界CO2输送压力设计提供指导。
1 实验方法
1.1 实验材料
采用商用X65管线钢作为实验材料,并利用线切割法从钢管上截取所需形状及尺寸试样。实验材料的化学成分(质量分数,%)为:C 0.04,Si 0.27,Mn 1.56,P 0.012,S 0.001,Mo 0.092,Cr 0.031,Ni 0.160,Al 0.019,Cu 0.003,Fe余量。实验材料的组织为铁素体和珠光体(图1)。慢应变速率拉伸试样加工成圆棒状,具体尺寸如图2所示。实验前,将拉伸试样表面分别用120、240、360、800、1200、1500粒度水砂纸逐级打磨,最后一道打磨痕迹应与拉伸方向保持一致,清洗、干燥并称重。用于四点弯应力腐蚀实验的试样为60 mm × 10 mm × 2 mm块状试样。依次使用120、240、360、800粒度水砂纸逐级打磨试样表面,按与前述相同程序进行清洗、干燥和保存。
图1
图2
图2
慢应变速率拉伸试样尺寸
Fig.2
Size of the specimen used for the slow strain rate tensile test (unit: mm)
1.2 慢应变速率拉伸实验
利用YYF-50型拉伸实验机在含杂质的超临界CO2环境中开展慢应变速率拉伸(SSRT)实验,实验条件如表1所示。将试样安装在高压釜拉伸台上后,向反应釜内注入实验所需的水量(除氧去离子水),迅速关闭反应釜,并持续通入99.999%纯度的CO2气体至少2 h进行除氧。随后,加热反应釜至实验温度,再分别向反应釜内通入O2/CO2、H2S/CO2、SO2/CO2和NO2/CO2混合气至实验所需杂质气体含量,再使用增压泵将纯CO2泵入反应釜内,直至实验设定压力。将拉伸试样暴露在实验环境中预腐蚀18 h后,进行慢应变速率拉伸实验,应变速率为1 × 10-6 s-1。各条件下的实验至少重复2次,以确保实验结果重复性。实验结束后,利用扫描电子显微镜(SEM,JEOL JSM-7200F)观察拉伸试样断口表面及侧面微观形貌。采用
表1 慢应变速率拉伸和四点弯应力腐蚀实验条件
Table 1
Condition | CO2 pressure / MPa | Temperature / ºC | O2 / % | H2S / % | NO2 / % | SO2 / % | H2O / % |
---|---|---|---|---|---|---|---|
1 | 7.5 | 50 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
2 | 10 | ||||||
3 | 14 |
式中,S1为拉伸试样在腐蚀环境中断裂后的断面面积,mm2;S0为拉伸试样标距段的横截面面积,mm2。为了明确CO2压力对X65管线钢SCC敏感性的影响,采用
式中,Ψ0和Ψi分别为空气和腐蚀环境中X65管线钢的断面收缩率。
1.3 四点弯应力腐蚀实验
图3
图3
四点弯应力腐蚀实验装置示意图
Fig.3
Schematic diagram of four-point-bending stress corrosion testing device
式中,W1和W2为试样初始及腐蚀后去除腐蚀产物后的质量,g;t为腐蚀时间,240 h;ρ为X65管线钢的密度,7.85 g/cm3;S为试样表面积,cm2。本文中所述的X65管线钢的腐蚀速率为3个平行试样腐蚀速率的平均值。此外,采用扫描电镜(SEM,JEOL JSM-7200F)、能谱仪(EDS,OXFORD X-Max50)、Raman光谱(Renishaw inVia Reflex)等微观表征手段分析X65管线钢表面腐蚀产物膜的微观形貌、结构特征及化学成分。
1.4 电化学阻抗测试
采用Gamry Interface 1000E电化学工作站对应力腐蚀后覆盖腐蚀产物膜的试样进行电化学阻抗(EIS)测试,以明确不同CO2压力条件下X65管线钢在含杂质超临界CO2环境中形成的腐蚀产物膜的保护性能。电化学阻抗测量在常温常压条件下进行,实验溶液为3.5% (质量分数) NaCl水溶液。FPB应力腐蚀后的带腐蚀产物膜试样为工作电极,暴露面积为1 cm2,选用饱和甘汞电极(SCE)作为参比电极,使用铂片电极作为对电极。首先进行开路电位(OCP)测量,待OCP稳定1 h后进行EIS测量,交流电压幅值为10 mV,频率范围为105~10-2 Hz。采用ZSimpWin软件对EIS数据进行拟合。为保证测试准确性,每组测试均至少重复3次。
2 结果与讨论
2.1 应力-应变曲线和SCC敏感性
图4为X65管线钢在空气和不同压力的含杂质的超临界CO2腐蚀环境中的应力-应变曲线。相比在空气中拉伸曲线,不同腐蚀环境对X65管线钢拉伸曲线的弹性、屈服及强化阶段影响不大。相应地,不同环境中X65管线钢的屈服强度和抗拉强度几乎无明显或规律性变化。然而,在不同CO2压力的腐蚀环境中X65管线钢从颈缩至断裂的应变量存在一定程度降低,说明在含杂质的超临界CO2环境中,压力变化对X65管线钢力学性能的影响主要反映在颈缩阶段,使得X65管线钢的塑性变形能力不同程度地降低。
图4
图4
不同压力下在含杂质的超临界CO2环境中X65管线钢的应力-应变曲线
Fig.4
Stress-strain curves of X65 pipeline steel after slow strain rate tensile test in impurity-containing supercritical CO2 environment at different CO2 pressures
图5a为X65管线钢在不同环境中的断面收缩率。据此计算得到其在不同压力的含杂质超临界CO2腐蚀环境中的SCC敏感性因子(IΨ-SCC),如图5b所示。X65管线钢在空气中的断面收缩率为84.56%,其在7.5、10和14 MPa CO2压力环境中分别降低至82.04%、82.88%和81.12% (图5a),对应的IΨ-SCC值分别为2.98%、1.99%和4.07% (图5b)。相关研究表明,一般情况下IΨ-SCC值越大,金属发生SCC可能性越高[9,10,26,27]。例如,Sun等[9]研究表明在含0.1%O2的水饱和超临界CO2环境(8 MPa CO2和50 ℃)中X65管线钢的IΨ-SCC值仅为0.28%,拉伸断口呈现韧性断裂特征,不发生SCC;而在含0.1%SO2的水饱和超临界CO2环境(8 MPa CO2和50 ℃)中,X65管线钢的IΨ-SCC值高达64.78%,拉伸断口则呈现明显脆性断裂特征,发生SCC。显然,在含0.01%H2O、0.01%O2、0.01%H2S、0.01%SO2和0.01%NO2的超临界CO2环境中,X65管线钢具有一定的SCC敏感性,而且随着CO2压力由7.5 MPa增加至14 MPa,其SCC敏感性呈先降后升的变化趋势。但是,在实验压力范围内X65管线钢的IΨ-SCC均处于非常低的水平,这表明X65管线钢在上述环境中发生SCC的可能性很低。
图5
图5
在含杂质超临界CO2环境中不同CO2压力下X65管线钢的断面收缩率(Ψ)和SCC敏感性因子(IΨ-SCC)
Fig.5
Reduction-in-area (Ψ) (a) and SCC susceptibility index (IΨ-SCC) (b) of X65 pipeline steel after SSRT test in impurity-containing supercritical CO2 environment at different CO2 pressures
2.2 断口微观形貌
图6a1和a2为X65管线钢在空气中的拉伸断口形貌。X65管线钢的断口呈现韧窝形貌,断口表面及断口周围颈缩区域均未见明显的二次裂纹,说明其发生韧性断裂。X65管线钢在不同压力的含杂质超临界CO2环境中拉伸断裂后的断口形貌与其在空气中的基本相同,均呈现韧窝形貌,且无明显脆性特征和二次裂纹(图6b1~d1和图6b2~d2),说明其仍然发生韧性断裂。上述结果表明,在含0.01%H2O、0.01%O2、0.01%H2S、0.01%SO2和0.01%NO2的超临界CO2环境中,尽管X65管线钢由于受到腐蚀作用会产生一定程度的塑性损失(图5),但这并不足以导致其发生SCC。基于SSRT结果可知在含0.01%H2O及多种微量杂质共存的超临界CO2环境中X65管线钢对SCC不敏感。尽管CO2压力的变化会轻微改变X65管线钢的SCC敏感性,但其影响程度不显著。
图6
图6
在空气和不同压力的含杂质超临界CO2环境中X65管线钢的拉伸断口形貌
Fig.6
Fracture morphology of X65 pipeline steel in air (a1, a2) and supercritical CO2 environment with impurities at different CO2 pressures of 7.5 MPa (b1, b2), 10 MPa (c1, c2) and 14 MPa (d1, d2)
值得注意的是,对于含微量水及杂质的超临界CO2输送环境,只有溶解于CO2中的H2O析出成为自由水,才会造成管道的腐蚀。由于实验环境中的水含量很低,能够在X65管线钢表面形成的自由水量很少,在较短SSRT实验周期内,这很可能导致腐蚀环境对X65管线钢产生的腐蚀作用并不显著,使得X65管线钢呈现出低的SCC敏感性。因此,仅通过短时间的SSRT结果不能充分说明X65管线钢不发生SCC。鉴于此,进一步开展了长周期FPB应力腐蚀模拟实验,以明确X65管线钢在上述环境中是否发生SCC。
2.3 腐蚀速率、腐蚀形态及腐蚀产物膜特性
图7
图7
在不同压力的含杂质超临界CO2环境中施加520 MPa应力并暴露240 h后X65管线钢的应力腐蚀速率
Fig.7
Corrosion rate of X65 pipeline steel with the stress of 520 MPa exposed to supercritical CO2 environment containing impurities at different CO2 pressures for 240 h
图8
图8
在不同CO2压力的含杂质超临界CO2环境中应力腐蚀240 h后及去除腐蚀产物膜后X65管线钢的表面宏观形貌
Fig.8
Macroscopic surface morphology of X65 pipeline steel before (a1-c1) and after the removal of corrosion products (a2-c2) after stress corrosion in supercritical CO2 environment with impurities at different CO2 pressures of 7.5 MPa (a1, a2), 10 MPa (b1, b2) and 14 MPa (c1, c2) for 240 h
图9为应力腐蚀240 h后X65管线钢表面SEM形貌、截面SEM形貌和截面EDS面扫描分析。在不同CO2压力环境中下腐蚀后X65管线钢表面形成的腐蚀产物膜微观形貌存在明显差异:7.5 MPa CO2压力时,腐蚀产物疏松,呈絮状沉积,腐蚀产物膜内部存在一些细微的孔隙(图9a1和a2);10 MPa CO2压力时,腐蚀产物膜较薄,但相对致密(图9b1和b2);14 MPa CO2压力时,腐蚀产物呈胶泥状沉积,腐蚀产物膜表面和内部均可可观察到大量龟裂纹(图9c1和c2);腐蚀产物膜厚度随着压力升高呈先降低后增加的趋势,与X65管线钢的腐蚀速率变化趋势一致。此外,从图9a2~c2中截面形貌可见,应力腐蚀240 h后X65管线钢内部无明显微裂纹存在,进一步证明X65管线钢没有发生SCC。
图9
图9
X65管线钢在不同CO2压力的含杂质超临界CO2环境中应力腐蚀240 h后的表面、截面SEM形貌和截面EDS面扫描分析
Fig.9
SEM surface morphology (a1-c1), SEM cross-sectional morphology (a2-c2) and EDS map scanning analysis of cross section (a3-c3) of X65 pipeline steel after stress corrosion in impurity-containing supercritical CO2 environment at different CO2 pressures of 7.5 MPa (a1-a3), 10 MPa (b1-b3) and 14 MPa (c1-c3) for 240 h
由图9a3~c3中EDS分析结果可见,在各CO2压力环境中应力腐蚀204 h后形成的腐蚀产物膜主要由Fe、O和S组成,元素分布均匀。在7.5 MPa和10 MPa CO2压力环境中腐蚀产物膜中S含量较少,说明腐蚀产物以Fe和O的化合物为主;而在14 MPa CO2压力环境中腐蚀产物中S含量明显增多,说明腐蚀产物中含S产物含量增加。为了进一步确定腐蚀产物膜的化学组成及差异,采用Raman光谱对X65管线钢表面腐蚀产物膜进行分析(图10)。不同压力的CO2环境中腐蚀产物膜的Raman散射峰基本相同:在波数为216、274、383、482、586、712和1301 cm-1处的Raman散射峰对应于FeOOH[10,28~30],489和800 cm-1对应于FeSO4或FeSO4的水合物[31,32]。由此可见,不同CO2压力环境中形成的腐蚀产物膜的主要化学成分相同,均为FeOOH和FeSO4。显然,在含O2、H2S、SO2和NO2的超临界CO2环境中,杂质间可以发生化学反应,生成H2SO4[25,33],进而形成FeSO4产物。FeOOH是含O2或NO2杂质的超临界CO2环境中常见的腐蚀产物[21]:一方面O2和NO2直接参与X65管线钢的腐蚀过程,形成FeOOH;另一方面,在实验环境中X65管线钢表面可能形成的腐蚀产物,如FeSO4、FeCO3和FeS等[34],暴露于含氧的湿气环境中容易被氧化,从而形成FeOOH产物[25]。
图10
图10
X65管线钢在不同压力的含杂质超临界CO2环境中应力腐蚀240 h后表面腐蚀产物的Raman光谱
Fig.10
Raman spectra of corrosion products on X65 pipeline steel with the stress of 520 MPa after stress corrosion in impurity-containing supercritical CO2 environment at different CO2 pressures for 240 h
2.4 应力腐蚀差异原因分析
在含相同杂质的超临界CO2环境中,X65管线钢均未开裂。随着CO2压力变化,X65管线钢的SCC敏感性相差不大,但均表现出一定的SCC敏感性。压力变化主要造成X65管线钢电化学腐蚀的差异,且受压力影响的X65管线钢SCC敏感性变化规律与电化学腐蚀变化规律一致。压力变化导致的X65管线钢电化学腐蚀差异主要表现在腐蚀速率和腐蚀产物膜特征的改变,其原因可能与腐蚀环境中腐蚀性物质含量和腐蚀产物膜保护性有关。
对于含杂质的超临界CO2输送环境,管线钢是否发生腐蚀取决于钢表面能否形成自由液相[19]。相关研究表明,在相同的含杂质的超临界CO2环境中,随着含水量的提高,由于能够在钢表面形成的腐蚀性液相量增多,管线钢腐蚀速率及腐蚀产物膜厚度也相应增加[35]。因此,钢表面形成腐蚀产物膜厚度的不同能够一定程度地反映出其表面腐蚀性液相形成量的差异。不同压力条件下X65管线钢发生不同程度的腐蚀,说明溶解于超临界CO2中H2O析出并沉积在钢表面。相应地,超临界CO2及杂质气体溶解于液相中改变液膜的化学性质,进而影响管线钢的腐蚀。为了明确CO2压力变化对形成液相化学特性的影响,采用OLI Analyzer studio软件的Stream Analyzer模块进行了水化学计算。由图9可见,在7.5、10和14 MPa CO2压力环境中X65管线钢表面腐蚀产物膜厚度分别为7、3.5和10 μm。据此,假设3种CO2压力环境中分别形成7、3.5和10 μm的液膜,即在X65管线钢表面每单位面积(cm2)分别沉积0.0007、0.00035和0.0010 g的H2O。根据表1中实验条件,确定用于水化学计算的CO2及杂质组分量。不同CO2压力环境中液膜的化学分析计算结果如表2所示。随着压力的升高,X65管线钢表面液膜中溶解的CO2、杂质气体及主要离子含量呈先降低后升高的变化趋势,与腐蚀速率变化规律一致。而液膜中杂质气体及主要离子浓度随压力变化趋势与腐蚀速率变化无明显相关性。随着压力的增加,HS-、CO
表2 不同CO2压力的含杂质超临界CO2环境中形成液膜中CO2及杂质组分和主要离子的质量与浓度
Table 2
Chemical | 7.5 MPa CO2 | 10 MPa CO2 | 14 MPa CO2 | |||
---|---|---|---|---|---|---|
substance | Mass / g | Mass fraction / % | Mass / g | Mass fraction / % | Mass / g | Mass fraction / % |
H2O | 7.000 × 10-4 | 95.635 | 3.500 × 10-4 | 95.027 | 1.000 × 10-3 | 94.595 |
CO2(aq) | 3.260 × 10-5 | 4.324 | 1.860 × 10-5 | 4.941 | 5.936 × 10-5 | 5.379 |
O2(aq) | 2.441 × 10-10 | 3.242 × 10-5 | 2.064 × 10-10 | 5.486 × 10-5 | 1.012 × 10-9 | 9.169 × 10-5 |
H2S(aq) | 8.805 × 10-9 | 1.169 × 10-3 | 4.650 × 10-9 | 1.236 × 10-3 | 1.359 × 10-8 | 1.232 × 10-3 |
NO2(aq) | 3.738 × 10-8 | 4.950 × 10-3 | 1.365 × 10-8 | 3.622 × 10-3 | 2.645 × 10-8 | 2.394 × 10-3 |
SO2(aq) | 1.936 × 10-7 | 7.224 × 10-3 | 7.954 × 10-8 | 5.455 × 10-3 | 1.863 × 10-7 | 3.948 × 10-3 |
H+ | 2.329 × 10-9 | 3.093 × 10-4 | 1.019 × 10-9 | 2.708 × 10-4 | 2.585 × 10-9 | 2.343 × 10-4 |
HCO | 8.425 × 10-9 | 1.119 × 10-3 | 5.471 × 10-9 | 1.454 × 10-3 | 2.052 × 10-8 | 1.860 × 10-3 |
HS- | 5.952 × 10-13 | 7.902 × 10-8 | 3.586 × 10-13 | 9.529 × 10-8 | 1.222 × 10-12 | 1.107 × 10-7 |
HSO | 1.761 × 10-7 | 2.339 × 10-2 | 7.468 × 10-8 | 1.985 × 10-2 | 1.806 × 10-7 | 1.637 × 10-2 |
当腐蚀产物膜在X65管线钢表面形成后,其可将钢表面与腐蚀性液相隔离,此时管线钢的腐蚀不再受液相环境直接影响,必须考虑钢基体表面覆盖的腐蚀产物膜的影响。由腐蚀产物膜表面及截面SEM结果(图9)可见,随着CO2压力改变,腐蚀产物膜致密程度相应产生变化,且与腐蚀速率变化规律一致。压力变化可能通过改变腐蚀产物膜保护性来影响管线钢的腐蚀[36]。为了验证不同压力环境中X65管线钢表面腐蚀产物膜的保护性,对不同压力的含杂质超临界CO2环境中应力腐蚀后覆盖腐蚀产物膜的X65管线钢进行EIS测试。图11a和b为不同压力条件下X65管线钢表面腐蚀产物膜的EIS图谱。由图11a可见,在不同压力CO2环境中形成的腐蚀产物膜的Nyquist图均呈现单一容抗弧的特征。随着CO2压力的升高,容抗弧直径(图11a)、0.01 Hz处的阻抗模值以及最大相位角(图11b)均先增大后减小。这表明随着CO2压力的增加,X65管线钢表面腐蚀产物膜的耐蚀性先增加后降低,即在10 MPa CO2压力环境中形成的腐蚀产物膜具有最好的保护性。采用图11c中等效电路对图11a和b中的EIS数据进行拟合,其中Rs为溶液电阻,Qdl和Rct分别表示腐蚀产物膜与溶液界面处的双电层电容和电荷转移电阻。腐蚀产物膜的EIS拟合数据如表3所示。随着CO2压力升高,Rct先增加后降低。相比10 MPa,7.5 MPa压力条件下的Rct略有降低,14 MPa压力下Rct降低了约3倍。上述结果表明,10 MPa压力环境中形成的腐蚀产物膜对传质过程具有更高的阻力,其保护性最好。由此可见,不同CO2压力环境中X65管线钢腐蚀速率差异也与压力变化引起的腐蚀产物膜保护性变化密切相关。
图11
图11
在不同压力的含杂质超临界CO2环境中X65管线钢表面腐蚀产物膜的电化学阻抗图谱及等效电路图
Fig.11
EIS of the corrosion film on X65 pipeline steel exposed to impurity-containing supercritical CO2 environment at different CO2 pressures: (a) Nyquist plots, (b) Bode plots, (c) equivalent circuit used for fitting the EIS data
表3 在不同CO2压力的含杂质超临界CO2环境中X65管线钢表面腐蚀膜的EIS拟合数据
Table 3
CO2 pressure / MPa | Rs / Ω·cm2 | Rct / Ω·cm2 | Y0(Qdl) / Ω-1·cm-2·S n | n(Qdl) |
---|---|---|---|---|
7.5 | 13.86 | 349.2 | 0.033 | 0.721 |
10 | 14.04 | 491.3 | 0.051 | 0.858 |
14 | 13.88 | 151.4 | 0.027 | 0.705 |
3 结论
(1) 在含0.01%H2O、0.01%O2、0.01%H2S、0.01% SO2和0.01%NO2的超临界CO2环境中,7.5 MPa至14 MPa压力范围内,X65管线钢均未发生SCC,但存在一定的SCC敏感性。X65管线钢的SCC敏感性随着CO2压力升高呈先降低后升高的变化趋势,这与CO2压力变化引起的X65管线钢腐蚀程度不同密切相关。
(2) 在低含水多杂质共存超临界CO2环境中,应力作用下的X65管线钢的腐蚀速率随着CO2压力升高呈现先降后升的变化规律。CO2压力不同导致X65管线钢表面液相化学环境以及腐蚀产物膜保护性发生变化,进而造成X65管线钢的腐蚀速率的差异。
参考文献
Possible pathways for low carbon transitions: investigating the efforts of oil companies in CCUS technologies
[J].
A proposed global layout of carbon capture and storage in line with a 2 ℃ climate target
[J].
Construction and innovative practice of new generation oil and gas development technology system
[J].
新一代油气开发技术体系构建与创新实践
[J].
Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines
[J].
Progress and future development trend of CO2 pipeline transportation technology
[J].
CO2管道输送技术进展与未来发展浅析
[J].
Dynamis CO2 quality recommendations
[J].
Materials challenges with CO2 transport and injection for carbon capture and storage
[J].
A systematic review of key challenges of CO2 transport via pipelines
[J].
Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams
[J].
Experimental investigation of stress corrosion on supercritical CO2 transportation pipelines against leakage for CCUS applications
[J].
Hydrogen permeation and SCC susceptibility of X70 pipeline steel in CO2-saturated water environment containing acidic impurity
[J].
The role of hydrogen in the corrosion and cracking of steels-a review
[J].
Corrosion of pipeline steel in dense phase CO2 containing impurities: A critical review of test methodologies
[J].
Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines
[J].
Long-term corrosion and stress corrosion cracking of X65 steel in H2O-saturated supercritical CO2 with SO2 and O2 impurities
[J].
Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation
[J].
Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S
[J].
Research progress on corrosion of CO2 injection well tubing in CCUS system
[J].
CCUS系统中CO2注入井管材腐蚀研究进展
[J].
Research progress on corrosion behavior of gaseous CO2 transportation pipelines containing impurities
[J].
含杂质气态CO2输送管道腐蚀研究进展
[J].气态CO<sub>2</sub>输送管道是CO<sub>2</sub>捕集与储存(CCS)过程中的重要一环,含杂质气态CO<sub>2</sub>输送管道的腐蚀控制对于管道的安全运行尤为重要。本文综述了目前含杂质气态CO<sub>2</sub>输送管道腐蚀的研究成果,总结了气态CO<sub>2</sub>输送管道腐蚀的影响因素,阐述了杂质与环境条件对水与CO<sub>2</sub>的互溶度、管道钢腐蚀行为、腐蚀产物膜特征及腐蚀机理的影响,分析了气态CO<sub>2</sub>输送管道临界含水量的确定,归纳了适用于气态CO<sub>2</sub>输送管道的腐蚀预测模型。本文指出当前气态CO<sub>2</sub>输送管道腐蚀研究亟待解决的科学问题包括:含杂质气态CO<sub>2</sub>环境中水与CO<sub>2</sub>互溶度的计算;杂质对气态CO<sub>2</sub>环境中腐蚀产物膜特征及腐蚀机理的影响;含杂质气态CO<sub>2</sub>输送管道不发生腐蚀临界含水量的确定;含杂质气态CO<sub>2</sub>输送管道内腐蚀预测模型的建立。
Effect of water content on corrosion behavior of X65 pipeline Steel in supercritical CO2 fluids
[J].
水含量对超临界CO2输送管道腐蚀的影响
[J].通过模拟实验和表面分析技术等方法,对比研究有无杂质的超临界CO<sub>2</sub>输送环境中水含量对X65管线钢腐蚀行为的影响,并探讨不同水含量环境中杂质对X65钢腐蚀的影响机理。结果表明:在超临界CO<sub>2</sub>-H<sub>2</sub>O环境中,即使水含量达到饱和溶解度0.4114%,X65钢也仅发生轻微腐蚀,腐蚀速率为0.0013 mm/a。在O<sub>2</sub>、H<sub>2</sub>S、SO<sub>2</sub>和NO<sub>2</sub>杂质共存的超临界CO<sub>2</sub>-H<sub>2</sub>O环境中,水含量由0.002%增加至0.4114%,X65钢腐蚀速率由0.0181 mm/a增加至0.2901 mm/a。杂质与杂质间交互作用显著促进腐蚀性液相形成,进而加剧X65钢的腐蚀。在低含水量环境中,X65钢腐蚀过程由杂质间反应产物控制;而在高含水量环境中,杂质和杂质间反应产物共同控制X65钢的腐蚀过程。
Effect of SO2, O2, NO2, and H2O concentrations on chemical reactions and corrosion of carbon steel in dense phase CO2
[J].Carbon capture, utilization, and storage is expected to be an important method for reducing CO2 emissions to prevent global warming. Several species (impurities) could follow the CO2 through the capture plant as carry over. It is expected that nitrogen dioxide (NO2), sulfur dioxide (SO2), oxygen (O-2), and water (H2O) can be present as impurities (concentrations at the ppmv level) in the captured CO2. The exact composition will depend on the flue gas type, the CO2 capturing process, and multiple other parameters. Some of these impurities are reactive and may cause corrosion in carbon steel pipelines and could therefore be a threat for safe CO2 transport. The present study used a novel experimental setup to realistically simulate a CO2 transport pipeline system with a controlled and variable concentration of impurities at a total pressure of 10 MPa and a temperature of 25 degrees C. The water concentration was increased and decreased with constant concentration of SO2 and O-2, to observe and identify possible reactions or threshold levels which could cause corrosion. A similar experiment was conducted with NO2. First, experiments were performed without steel coupons, to observe uncatalyzed reactions, and then with coupons to measure corrosion rates. The first sign of corrosion appeared at 350 ppmv of water with NO2 present. At 670 ppmv water with 75 ppmv NO2 the overall corrosion rate was about 0.57 mm/y and the main product was iron oxide. The corrosion process for SO2, O-2, and water was much slower, and the first sign of corrosion appeared around 1,900 ppmv of water, with about 75 ppmv of SO2 and 230 ppmv of O-2. The corrosion rate increased some when the water concentration was increased to 2,400 ppmv, but the overall corrosion rate was only 3.6 mu m/y and the main product on the surface was iron sulfate.
Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water
[J].
温度对钛合金应力腐蚀行为的影响
[J].通过在实验室控制海水温度模拟不同海域和季节海水环境。采用恒位移应力腐蚀实验和慢应变速率拉伸实验 (SSRT) 考察温度对Ti80钛合金应力腐蚀敏感性的影响规律,结合电化学阻抗谱、Mott-Schottky曲线以及三维视频显微镜和扫描电镜 (SEM) 分析温度对钛合金的影响机制。结果表明:在常压,5~35 ℃范围内,随着温度的降低,钛合金样品的应力腐蚀开裂敏感性指数逐渐增大,临界强度因子K<sub>1SCC</sub>值逐渐减小,应力腐蚀倾向增加。低温海水环境下样品断口局部甚至出现河流花样特征和撕裂岭准解理特征。这是因为低温海水环境中钛合金样品裂纹尖端钝化膜电阻较小、缺陷较多、位错容易堆积从而导致钝化膜局部应力集中,膜致应力增大,与外加应力协同作用下,裂纹成核和扩展加快,导致钝化膜难以修复 ,应力腐蚀速率加快。
Effects of pre-strain on hydrogen-induced stress corrosion cracking behavior of Q345R steel in hydrofluoric acid vapor environment
[J].
Corrosion behaviors of steels under supercritical CO2 conditions
[J].
Corrosion behaviors of X65 steel in gaseous CO2 environment containing impurities
[J].
含杂质气态CO2环境中X65钢腐蚀行为
[J].
Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions
[J].
High stress corrosion cracking resistance of in-situ nanoparticle strengthened steel
[J].
In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO
Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy
[J].
Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation
[J].
Micro-Raman studies of hydrous ferrous sulfates and jarosites
[J].
The hydrates and deuterates of ferrous sulfate (FeSO4): A Raman spectroscopic study
[J].
Experimental based CO2 transport specification ensuring material integrity
[J].
Corrosion behavior of P110 steel in vapor-liquid phase of H2S/CO2 coexistence system
[J].
H2S/CO2共存体系气液相中P110钢的腐蚀行为
[J].
Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application
[J].
Influence of CO2 subcritical and supercritical pressures on the protective properties of corrosion product scales formed on X65 steel
[J].
/
〈 |
|
〉 |
