Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1341-1350     CSTR: 32134.14.1005.4537.2024.389      DOI: 10.11902/1005.4537.2024.389
  研究报告 本期目录 | 过刊浏览 |
EH36钢中MoSRB附着和腐蚀的影响及机理
郭章伟, 叶婷雨, 郭娜, 刘涛()
上海海事大学海洋科学与工程学院 上海 201306
Effect of Mo Addition on Corrosion Behavior of EH36 Steel in Seawater Included With Sulfate Reduction Bacteria
GUO Zhangwei, YE Tingyu, GUO Na, LIU Tao()
Shanghai Maritime University, College of Ocean Science and Engineering, Shanghai 201306, China
引用本文:

郭章伟, 叶婷雨, 郭娜, 刘涛. EH36钢中MoSRB附着和腐蚀的影响及机理[J]. 中国腐蚀与防护学报, 2025, 45(5): 1341-1350.
Zhangwei GUO, Tingyu YE, Na GUO, Tao LIU. Effect of Mo Addition on Corrosion Behavior of EH36 Steel in Seawater Included With Sulfate Reduction Bacteria[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1341-1350.

全文: PDF(15123 KB)   HTML
摘要: 

海洋工程材料的成分设计过程往往会忽略微生物的影响,但合金元素的组成可以对微生物附着和腐蚀造成很大地影响。研究表明,EH36船用钢中添加Mo加速了在海洋中常见的厌氧微生物硫酸盐还原菌(SRB)对材料的腐蚀。截面扫描电镜结果显示,相较于不含Mo的钢材,含Mo钢腐蚀产物层厚度由13 μm提高到20 μm;更多的点蚀出现在含钼钢表面,同时含Mo钢腐蚀速率比不含Mo钢提高了约40%。相关转录组分子机制指出,Mo可以增加SRB生物膜中附着和硫酸盐还原过程相关基因的表达。更致密的生物膜和硫化氢产物生成加速了材料腐蚀。因此,在微生物环境下设计材料时,应充分考虑微生物因素。

关键词 微生物腐蚀硫酸盐还原菌Mo分子机制转录组    
Abstract

In the design stage of marine engineering materials, it is easy to ignore the influence of microorganisms when the engineering facilities are in actual service. In fact, the alloying elements of the materials have a great impact on the adhesion of microorganisms and the corrosion performance of the materials. Herein, the effect of Mo addition on the corrosion behavior of EH36 marine steel in aged seawater included with sulfate reducing bacteria (SRB) is assessed via electrochemical measurement, optical microscope, scanning electron microscope and X-ray diffractometer etc. The results show that the introduction of Mo can accelerate the SRB induced corrosion of the EH36 steel, namely the thickness of the corrosion product scale of the Mo containing steel is 20 μm, while that of the steel without Mo is 13 μm, the corrosion increment of the former is as high as 40%; More pitting corrosion occurs on the surface of Mo containing steel. The relevant molecular mechanisms indicated that molybdenum could increase the expression of genes related to the adhesion and sulfate reduction processes in SRB biofilms. A denser biofilm and more hydrogen sulfide production accelerated material corrosion. Therefore, when designing materials in microbial environments, microbial factors should be fully considered.

Key wordsMIC    sulfate reducing bacteria    molybdenum    molecular mechanisms    RNA-seq
收稿日期: 2024-11-29      32134.14.1005.4537.2024.389
ZTFLH:  TG172  
基金资助:国家自然科学基金(51901127);国家自然科学基金(41976039);国家自然科学基金(42006039)
通讯作者: 刘涛,E-mail:liutao@shmtu.edu.cn,研究方向为材料表面腐蚀与防护、材料失效
Corresponding author: LIU Tao, E-mail: liutao@shmtu.edu.cn
作者简介: 郭章伟,男,1989年生,博士,副教授
SteelCSiMnPSNbNCaMoFe
Cs0.050.21.5< 0.01< 0.0010.02< 0.0040.00250.0Bal.
Ms0.050.21.5< 0.01< 0.0010.02< 0.0040.00251.0Bal.
表1  对照钢(Cs)和含钼钢(Ms)的化学成分
图1  荧光显微镜下细菌在Cs和Ms表面附着情况
图2  Cs和Ms在无菌培养基中浸泡14 d后表面SEM图像
图3  Cs和Ms在有菌培养基中浸泡14 d后表面的SEM图像
图4  Cs和Ms 在有菌培养基中浸泡14 d后的SEM横截面图
图5  Cs和Ms在含D.vulgaris的培养基中浸泡14 d后的XRD谱图
图6  Cs和Ms在有菌培养基中浸泡14 d后的EDS结果
图7  Cs和Ms在无菌培养基中浸泡14 d后点蚀的二维和三维图像
图8  Cs和Ms在有菌培养基中浸泡14 d后点蚀的二维和三维图像
图9  Cs和Ms在无菌和有菌培养基中浸泡10 d后表面点蚀统计
图10  Ms和Cs在无菌和有菌培养基中的腐蚀速率
图11  Ms和Cs在无菌和有菌培养基中的Nyquist图和相应等效电路图
GroupRs / Ω·cm2Yf / S·s n ·cm-2nRfilm / Ω·cm2Ydl / S·s n ·cm-2nRct / Ω·cm2
Cs (1 d)60.796.8 × 10-50.93.6 × 1022.3 × 10-40.75.2 × 103
Cs (9 d)49.561.8 × 10-40.92.5 × 1048.4 × 10-50.92.2 × 104
Cs (14 d)56.028.0 × 10-512.4 × 1047.7 × 10-50.96.3 × 104
Ms (1 d)68.253.8 × 10-50.86.4 × 1034.5 × 10-50.92.4 × 104
Ms (9 d)69.9610.0 × 10-50.95.9 × 1031.4 × 10-30.52.9 × 102
Ms (14 d)68.141.1 × 10-40.81.7 × 1041.1 × 10-40.99.1 × 104
表2  Cs和Ms在无菌培养基中浸泡不同时间后的EIS的拟合参数
GroupRs / Ω·cm2Yf / S·s n ·cm-2nRfilm / Ω·cm2Ydl / S·s n ·cm-2nRct / Ω·cm2
Cs (1 d)60.203.1 × 10-50.649.23.6 × 10-50.82.9 × 104
Cs (9 d)65.701.3 × 10-30.49.7 × 1023.1× × 10-40.91.5 × 103
Cs (14 d)45.582.6 × 10-40.94.6 × 1033.4 × 10-50.593.1
Ms (1 d)64.501.7 × 10-40.923.22.9 × 10-40.98.2 × 103
Ms (9 d)59.951.1 × 10-30.617.73.4 × 10-40.91.6 × 104
Ms (14 d)61.083.1 × 10-40.722.32.0 × 10-40.96.0 × 104
表3  Cs和Ms在有菌培养基中浸泡不同时间后的EIS拟合参数
图12  Mo影响D.vulgaris在合金钢表面的附着和腐蚀的分子控制机理图
[1] Little B J, Lee J S. Microbiologically influenced corrosion: an update [J]. Int. Mater. Rev., 2014, 59: 384
[2] Qian H C, Zhang D W, Lou Y T, et al. Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense [J]. Corros. Sci., 2018, 145: 151
[3] Li Z Y, Chang W W, Cui T Y, et al. Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel [J]. Commun. Mater., 2021, 2: 67
[4] Satpathy S, Sen S K, Pattanaik S, et al. Review on bacterial biofilm: an universal cause of contamination [J]. Biocatal. Agric. Biotechnol., 2016, 7: 56
[5] Yazdi M, Khan F, Abbassi R. Microbiologically influenced corrosion (MIC) management using Bayesian inference [J]. Ocean Eng., 2021, 226: 108852
[6] Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5 wt.%NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria [J]. Corros. Sci., 2018, 136: 275
[7] Yang J, Wang Z B, Qiao Y X, et al. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel [J]. Corros. Sci., 2022, 199: 110210
[8] Chen Z Y, Dou W W, Chen S G, et al. Influence of nutrition on Cu corrosion by Desulfovibrio vulgaris in anaerobic environment [J]. Bioelectrochemistry, 2022, 144: 108040
[9] Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection [J]. Colloid Surf., 2021, 202B: 111701
[10] Marja-Aho M, Rajala P, Huttunen-Saarivirta E, et al. Copper corrosion monitoring by electrical resistance probes in anoxic groundwater environment in the presence and absence of sulfate reducing bacteria [J]. Sensor. Actuat., 2018, 274A: 252
[11] Wang J L, Liu H F, Mohamed M E S, et al. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A [J]. J. Mater. Sci. Technol., 2022, 107: 43
[12] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
[13] Anguita J, Pizarro G, Vargas I T. Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer [J]. Bioelectrochemistry, 2022, 145: 108058
[14] Xu L T, Guan F, Ma Y, et al. Inadequate dosing of THPS treatment increases microbially influenced corrosion of pipeline steel by inducing biofilm growth of Desulfovibrio hontreensis SY-21 [J]. Bioelectrochemistry, 2022, 145: 108048
[15] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
doi: 10.1016/j.bioelechem.2016.03.003 pmid: 27071053
[16] Dinh T H, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427: 829
[17] Deng X, Dohmae N, Kaksonen A H, et al. Inside Cover: biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria (Angew. Chem. Int. Ed. 15/2020) [J]. Angew. Chem. Int. Ed., 2020, 59: 5854
[18] Cheng L, Min D, Liu D F, et al. Sensing and approaching toxic arsenate by Shewanella putrefaciens CN-32 [J]. Environ. Sci. Technol., 2019, 53: 14604
[19] Liu L C, Liu G F, Zhou J T, et al. Energy taxis toward redox-active surfaces decreases the transport of electroactive bacteria in saturated porous media [J]. Environ. Sci. Technol., 2021, 55: 5559
[20] Chevance F F V, Hughes T K. Coordinating assembly of a bacterial macromolecular machine [J]. Nat. Rev. Microbiol., 2008, 6: 455
doi: 10.1038/nrmicro1887 pmid: 18483484
[21] Kong K F, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection [J]. Int. J. Med. Microbiol., 2006, 296: 133
[22] Emerenini O B, Eberl J H. Reactor scale modeling of quorum sensing induced biofilm dispersal [J]. Appl. Math. Comput., 2022, 418: 126792
[23] Zhao J L, Xu D K, Babar Shahzad M, et al. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel [J]. Appl. Surf. Sci., 2016, 386: 371
[24] Lou Y T, Lin L, Xu D K, et al. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater [J]. Int. Biodeter. Biodegr., 2016, 110: 199
[25] Sun D, Xu D K, Yang C G, et al. An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel [J]. Sci. Rep., 2016, 6: 29244
doi: 10.1038/srep29244 pmid: 27385507
[26] Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
[26] 王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412
doi: 10.11902/1005.4537.2024.051
[27] Tripathi A K, Thakur P, Saxena P, et al. Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion [J]. Front. Microbiol., 2021, 12: 754140
[28] Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
[29] Zhou L, Liu J, Dong F Q. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage [J]. Spectrochim. Acta, 2017, 173A: 544
[30] Berg J S, Duverger A, Cordier L, et al. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium [J]. Sci. Rep., 2020, 10: 8264
doi: 10.1038/s41598-020-64990-6 pmid: 32427954
[31] Guo Z W, Wang W Q, Guo N, et al. Molybdenum-mediated chemotaxis of Pseudoalteromonas lipolytica enhances biofilm-induced mineralization on low alloy steel surface [J]. Corros. Sci., 2019, 159: 108123
[32] Guo Z W, Chai Z Y, Liu T, et al. Pseudomonas aeruginosa-accelerated corrosion of Mo-bearing low-alloy steel through molybdenum-mediating chemotaxis and motility [J]. Bioelectrochemistry, 2022, 144: 108047
[33] Childers S E, Ciufo S, Lovley D R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis [J]. Nature, 2002, 416: 767
[34] Friedlander R S, Vlamakis H, Kim P, et al. Bacterial flagella explore microscale hummocks and hollows to increase adhesion [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 5624
doi: 10.1073/pnas.1219662110 pmid: 23509269
[35] Hershey D M. Integrated control of surface adaptation by the bacterial flagellum [J]. Curr. Opin. Microbiol., 2021, 61: 1
doi: 10.1016/j.mib.2021.02.004 pmid: 33640633
[36] Ozer E, Yaniv K, Chetrit E, et al. An inside look at a biofilm: Pseudomonas aeruginosa flagella biotracking [J]. Sci. Adv., 2021, 7: eabg8581
[37] Liu X, Zhuo S Y, Jing X Y, et al. Flagella act as Geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer [J]. Biosens. Bioelectron., 2019, 146: 111748
[38] Shimoyama T, Kato S, Ishii S, et al. Flagellum mediates symbiosis [J]. Science, 2009, 323: 1574
doi: 10.1126/science.1170086 pmid: 19299611
[39] Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J]. Proc. Natl. Acad. Sci. USA, 2009, 103: 11358
[40] Cheng L, Min D, Liu D F, et al. Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements [J]. Biosens. Bioelectron., 2020, 156: 112136
[1] 孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
[2] 张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[3] 黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
[4] 陈丽娟, 晁刘伟, 赵景茂. CeO2@Zr-MOF复合材料的制备及其对环氧涂层保护性能的提升作用[J]. 中国腐蚀与防护学报, 2025, 45(3): 664-674.
[5] 戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[6] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[7] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[8] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[9] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[10] 陈郑, 宇文佩, 温思涵, 李美凤, 沙江波, 周春根. B添加对MoSi2 基化合物抗氧化性能影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 224-230.
[11] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[12] 潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[13] 杨成, 杨广明, 王建军, 苗学良, 张译, 孙宝壮, 刘智勇. 温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
[14] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[15] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.