|
|
EH36钢中Mo对SRB附着和腐蚀的影响及机理 |
郭章伟, 叶婷雨, 郭娜, 刘涛( ) |
上海海事大学海洋科学与工程学院 上海 201306 |
|
Effect of Mo Addition on Corrosion Behavior of EH36 Steel in Seawater Included With Sulfate Reduction Bacteria |
GUO Zhangwei, YE Tingyu, GUO Na, LIU Tao( ) |
Shanghai Maritime University, College of Ocean Science and Engineering, Shanghai 201306, China |
引用本文:
郭章伟, 叶婷雨, 郭娜, 刘涛. EH36钢中Mo对SRB附着和腐蚀的影响及机理[J]. 中国腐蚀与防护学报, 2025, 45(5): 1341-1350.
Zhangwei GUO,
Tingyu YE,
Na GUO,
Tao LIU.
Effect of Mo Addition on Corrosion Behavior of EH36 Steel in Seawater Included With Sulfate Reduction Bacteria[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1341-1350.
[1] |
Little B J, Lee J S. Microbiologically influenced corrosion: an update [J]. Int. Mater. Rev., 2014, 59: 384
|
[2] |
Qian H C, Zhang D W, Lou Y T, et al. Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense [J]. Corros. Sci., 2018, 145: 151
|
[3] |
Li Z Y, Chang W W, Cui T Y, et al. Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel [J]. Commun. Mater., 2021, 2: 67
|
[4] |
Satpathy S, Sen S K, Pattanaik S, et al. Review on bacterial biofilm: an universal cause of contamination [J]. Biocatal. Agric. Biotechnol., 2016, 7: 56
|
[5] |
Yazdi M, Khan F, Abbassi R. Microbiologically influenced corrosion (MIC) management using Bayesian inference [J]. Ocean Eng., 2021, 226: 108852
|
[6] |
Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5 wt.%NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria [J]. Corros. Sci., 2018, 136: 275
|
[7] |
Yang J, Wang Z B, Qiao Y X, et al. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel [J]. Corros. Sci., 2022, 199: 110210
|
[8] |
Chen Z Y, Dou W W, Chen S G, et al. Influence of nutrition on Cu corrosion by Desulfovibrio vulgaris in anaerobic environment [J]. Bioelectrochemistry, 2022, 144: 108040
|
[9] |
Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection [J]. Colloid Surf., 2021, 202B: 111701
|
[10] |
Marja-Aho M, Rajala P, Huttunen-Saarivirta E, et al. Copper corrosion monitoring by electrical resistance probes in anoxic groundwater environment in the presence and absence of sulfate reducing bacteria [J]. Sensor. Actuat., 2018, 274A: 252
|
[11] |
Wang J L, Liu H F, Mohamed M E S, et al. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A [J]. J. Mater. Sci. Technol., 2022, 107: 43
|
[12] |
Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
|
[13] |
Anguita J, Pizarro G, Vargas I T. Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer [J]. Bioelectrochemistry, 2022, 145: 108058
|
[14] |
Xu L T, Guan F, Ma Y, et al. Inadequate dosing of THPS treatment increases microbially influenced corrosion of pipeline steel by inducing biofilm growth of Desulfovibrio hontreensis SY-21 [J]. Bioelectrochemistry, 2022, 145: 108048
|
[15] |
Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
doi: 10.1016/j.bioelechem.2016.03.003
pmid: 27071053
|
[16] |
Dinh T H, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427: 829
|
[17] |
Deng X, Dohmae N, Kaksonen A H, et al. Inside Cover: biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria (Angew. Chem. Int. Ed. 15/2020) [J]. Angew. Chem. Int. Ed., 2020, 59: 5854
|
[18] |
Cheng L, Min D, Liu D F, et al. Sensing and approaching toxic arsenate by Shewanella putrefaciens CN-32 [J]. Environ. Sci. Technol., 2019, 53: 14604
|
[19] |
Liu L C, Liu G F, Zhou J T, et al. Energy taxis toward redox-active surfaces decreases the transport of electroactive bacteria in saturated porous media [J]. Environ. Sci. Technol., 2021, 55: 5559
|
[20] |
Chevance F F V, Hughes T K. Coordinating assembly of a bacterial macromolecular machine [J]. Nat. Rev. Microbiol., 2008, 6: 455
doi: 10.1038/nrmicro1887
pmid: 18483484
|
[21] |
Kong K F, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection [J]. Int. J. Med. Microbiol., 2006, 296: 133
|
[22] |
Emerenini O B, Eberl J H. Reactor scale modeling of quorum sensing induced biofilm dispersal [J]. Appl. Math. Comput., 2022, 418: 126792
|
[23] |
Zhao J L, Xu D K, Babar Shahzad M, et al. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel [J]. Appl. Surf. Sci., 2016, 386: 371
|
[24] |
Lou Y T, Lin L, Xu D K, et al. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater [J]. Int. Biodeter. Biodegr., 2016, 110: 199
|
[25] |
Sun D, Xu D K, Yang C G, et al. An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel [J]. Sci. Rep., 2016, 6: 29244
doi: 10.1038/srep29244
pmid: 27385507
|
[26] |
Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
|
[26] |
王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412
doi: 10.11902/1005.4537.2024.051
|
[27] |
Tripathi A K, Thakur P, Saxena P, et al. Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion [J]. Front. Microbiol., 2021, 12: 754140
|
[28] |
Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
|
[29] |
Zhou L, Liu J, Dong F Q. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage [J]. Spectrochim. Acta, 2017, 173A: 544
|
[30] |
Berg J S, Duverger A, Cordier L, et al. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium [J]. Sci. Rep., 2020, 10: 8264
doi: 10.1038/s41598-020-64990-6
pmid: 32427954
|
[31] |
Guo Z W, Wang W Q, Guo N, et al. Molybdenum-mediated chemotaxis of Pseudoalteromonas lipolytica enhances biofilm-induced mineralization on low alloy steel surface [J]. Corros. Sci., 2019, 159: 108123
|
[32] |
Guo Z W, Chai Z Y, Liu T, et al. Pseudomonas aeruginosa-accelerated corrosion of Mo-bearing low-alloy steel through molybdenum-mediating chemotaxis and motility [J]. Bioelectrochemistry, 2022, 144: 108047
|
[33] |
Childers S E, Ciufo S, Lovley D R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis [J]. Nature, 2002, 416: 767
|
[34] |
Friedlander R S, Vlamakis H, Kim P, et al. Bacterial flagella explore microscale hummocks and hollows to increase adhesion [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 5624
doi: 10.1073/pnas.1219662110
pmid: 23509269
|
[35] |
Hershey D M. Integrated control of surface adaptation by the bacterial flagellum [J]. Curr. Opin. Microbiol., 2021, 61: 1
doi: 10.1016/j.mib.2021.02.004
pmid: 33640633
|
[36] |
Ozer E, Yaniv K, Chetrit E, et al. An inside look at a biofilm: Pseudomonas aeruginosa flagella biotracking [J]. Sci. Adv., 2021, 7: eabg8581
|
[37] |
Liu X, Zhuo S Y, Jing X Y, et al. Flagella act as Geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer [J]. Biosens. Bioelectron., 2019, 146: 111748
|
[38] |
Shimoyama T, Kato S, Ishii S, et al. Flagellum mediates symbiosis [J]. Science, 2009, 323: 1574
doi: 10.1126/science.1170086
pmid: 19299611
|
[39] |
Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J]. Proc. Natl. Acad. Sci. USA, 2009, 103: 11358
|
[40] |
Cheng L, Min D, Liu D F, et al. Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements [J]. Biosens. Bioelectron., 2020, 156: 112136
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|