Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 757-764     CSTR: 32134.14.1005.4537.2024.097      DOI: 10.11902/1005.4537.2024.097
  研究报告 本期目录 | 过刊浏览 |
高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究
李丽1, 李善文1, 史洪微2,3(), 梁国平3,4, 李春霖1, 孙禹1, 秦晋2, 王伟4, 韩恩厚3,5
1.中车青岛四方机车车辆股份有限公司 青岛 266111
2.沈阳工业大学材料科学与工程学院 沈阳 110870
3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
4.东北大学材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
5.广东腐蚀科学与技术创新研究院 广州 510530
Corrosion Behavior and Hydrothermal Aging Mechanism of Epoxy Primer on Al-alloy for High-speed Train
LI Li1, LI Shanwen1, SHI Hongwei2,3(), LIANG Guoping3,4, LI Chunlin1, SUN Yu1, QIN Jin2, WANG Wei4, HAN En-Hou3,5
1.Qingdao Sifang Co., Ltd., CRRC, Qingdao 266111, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
3.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Key Laboratory for Anisotropy and Texture of Materials Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
5.Institute of Corrosion Science and Technology, Guangzhou 510530, China
引用本文:

李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
Li LI, Shanwen LI, Hongwei SHI, Guoping LIANG, Chunlin LI, Yu SUN, Jin QIN, Wei WANG, En-Hou HAN. Corrosion Behavior and Hydrothermal Aging Mechanism of Epoxy Primer on Al-alloy for High-speed Train[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 757-764.

全文: PDF(5479 KB)   HTML
摘要: 

采用电化学交流阻抗谱研究了高速列车铝合金表面环氧底漆的腐蚀行为。考察了环氧底漆湿热加速老化不同时间后,涂层表面形貌、光泽和色差的变化,分析了涂层的化学键变化。结果表明,环氧底漆在3.5% (质量分数) NaCl溶液浸泡2160 h之前,低频阻抗值变化不大,环氧底漆具有很好的隔绝保护作用。之后,环氧底漆的防护能力开始下降。湿热老化60 d,环氧底漆由于环氧树脂降解和颜填料脱落,表面逐渐变得粗糙。红外光谱表明,在湿热老化前10 d,由于后固化作用,环氧底漆表面的C-O-C键的伸缩振动吸收峰增强。10 d后,则由于水解作用而逐渐减弱。

关键词 环氧底漆高强铝合金电化学阻抗谱湿热老化Fourier变换红外光谱    
Abstract

A home-made commercial two-component epoxy primer with a ratio of epoxy paint to curing agent 5:1 was applied on a high-strength Al-alloy plate used for high-speed train. Then the corrosion process of the epoxy primer/Al-alloy was studied in 3.5%NaCl solution by electrochemical impedance spectra. The accelerated aging test was carried out via a chamber with humidity of 95% at 60 ℃ for 60 d, after hydrothermal aging for different times, the change in surface morphology, gloss and color difference of the coating was assessed and the change of chemical bonds of epoxy primer was analyzed. The results show that when the coating was immersed in 3.5%NaCl until 2160 h, the impedance spectra changed a little, indicating a good barrier effect. After 2160 h, the protective ability of epoxy primer started to decline. After 60 d of hydrothermal aging, the surface of epoxy primer became rough due to the decomposition of epoxy resin and falling of the pigments and fillers. Fourier Transform Infrared Spectra of the epoxy primer show that the peak of C-O-C stretching vibration intensified in the first 10 d due to the post curing and then weakened due to the hydrolysis.

Key wordsepoxy primer    high-strength Al-alloy    electrochemical impedance spectra    hydrothermal aging    Fourier transform infrared spectra
收稿日期: 2024-03-26      32134.14.1005.4537.2024.097
ZTFLH:  TG172  
基金资助:国家重点研发计划(2022YFB4700504)
通讯作者: 史洪微,E-mail:hwshi@sut.edu.cn,研究方向为金属防护涂层
Corresponding author: SHI Hongwei, E-mail: hwshi@sut.edu.cn
作者简介: 李 丽,女,1982年生,硕士
图1  环氧底漆/铝合金体系在3.5%NaCl溶液中浸泡不同时间后的Bode图
图2  环氧底漆/铝合金体系的EIS等效电路模型
图3  环氧底漆/铝合金体系在3.5%NaCl溶液中浸泡不同时间后的Bode图及拟合曲线
Immersion time / hRc / Ω·cm2QcWc / S·s1/2·cm-2
Y0 / S·sa·cm2a0
0.56.63 × 1086.10 × 10-108.64 × 10-1-
241.45 × 1095.99 × 10-108.65 × 10-1-
481.05 × 10103.97 × 10-108.93 × 10-1-
1201.25 × 10104.37 × 10-108.90 × 10-1-
3841.12 × 10104.50 × 10-108.92 × 10-1-
7201.09 × 10104.49 × 10-108.93 × 10-1-
12001.70 × 10104.14 × 10-109.00 × 10-1-
16801.32 × 10104.20 × 10-108.99 × 10-1-
21601.65 × 10104.19 × 10-109.00 × 10-1-
28802.23 × 1094.12 × 10-109.04 × 10-1-
38401.81 × 1095.11 × 10-108.87 × 10-1-
42009.79 × 1084.63 × 10-108.98 × 10-14.52 × 10-9
表1  环氧底漆/铝合金体系在3.5%NaCl溶液中浸泡不同时间后的EIS拟合结果
图4  环氧底漆/铝合金体系在3.5%NaCl溶液中浸泡不同时间后的Rc值
图5  不同老化时间后环氧底漆的表面形貌
图6  经不同时间老化后环氧底漆的光泽度和失光率
图7  经不同时间老化后环氧底漆的色差
Vibration mode of functional groupsVibration frequency / cm-1
O-H stretching N-H stretching3296
Asymmetric -CH2 stretching2923
Symmetric -CH2 stretching2852
C=O stretching1720
C=O stretching in amide1642
C=C stretching in benzene ring1606、1507、1181
C=C stretching1582
-CH3 bending1456
C-N stretching1296
Asymmetric C-O-φ stretching1237 (φ represents benzene ring)
Symmetric C-O-φ stretching1034
C-O-C stretching1011
Para-substituted of benzene ring stretching in bisphenol A structure879、826
表2  环氧树脂中主要官能团的FTIR峰
图8  经不同时间湿热老化后环氧底漆的红外光谱
[1] Liu S, Gu L, Zhao H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. J. Mater. Sci. Technol., 2016, 32: 425
[2] Cheng Q F, Wang J P, Jiang K L, et al. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites [J]. J. Mater. Res., 2008, 23: 2975
[3] Sørensen P A, Kiil S, Dam-Johansen K, et al. Anticorrosive coatings: a review [J]. J. Coat. Technol. Res., 2009, 6: 135
[4] Han Z Z, Guo X J, Duan S M, et al. Preparation of epoxy coating with good tolerance to surface pretreatment [J]. Paint Coat. Ind., 2016, 46(4): 61
[4] 韩忠智, 郭晓军, 段绍明 等. 低表面处理环氧涂料的研究 [J]. 涂料工业, 2016, 46(4): 61
[5] Sun J J, Shao H L, Zhang H Z, et al. Preparation of environmentally friendly epoxy coatings with low surface treatment [J]. China Coat., 2016, 31(11): 27
[5] 孙佳佳, 邵海龙, 张宏洲 等. 环境友好型低表面处理环氧涂料的制备 [J]. 中国涂料, 2016, 31(11): 27
[6] Lin H Q, Zhao M, Duan W C, et al. Correlation of aging behaviour exposed in hot and humid environment and assessed by indoor accelerated test for protective coating on al-alloy used for rail transit [J]. Corros. Sci. Prot. Technol., 2018, 31: 375
[6] 林化强, 赵 民, 段文超 等. 高温高湿环境轨道交通用铝合金涂层室外与室内腐蚀老化的相关性研究 [J]. 腐蚀科学与防护技术, 2018, 31: 375
[7] Lin H Q, Sun L, Duan W C, et al. Degradation of typical protective coatings on al-alloy used for transportation in high-temperature and high-humidity region [J]. Corros. Sci. Prot. Technol., 2017, 29: 247
[7] 林化强, 孙 琳, 段文超 等. 轨道交通用铝合金典型防护涂层在高温高湿地域的降解行为 [J]. 腐蚀科学与防护技术, 2017, 29: 247
[8] Lin H Q, Duan W C, Sun L, et al. Corrosion protective behavior of typical inhibitor pigments on aluminum alloy used for transportation [J]. Corros. Sci. Prot. Technol., 2017, 29: 227
[8] 林化强, 段文超, 孙 琳 等. 典型抑制剂颜料对轨道交通用铝合金的腐蚀防护行为影响研究 [J]. 腐蚀科学与防护技术, 2017, 29: 227
[9] Zahra Y, Djouani F, Fayolle B, et al. Thermo-oxidative aging of epoxy coating systems [J]. Prog. Org. Coat., 2014, 77: 380
[10] Liu F W, Yin M X, Xiong B Y, et al. Evolution of microstructure of epoxy coating during UV degradation progress studied by slow positron annihilation spectroscopy and electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2014, 133: 283
[11] Armstrong R D, Jenkins A T A, Johnson B W. An investigation into the UV breakdown of thermoset polyester coatings using impedance spectroscopy [J]. Corros. Sci., 1995, 37: 1615
[12] Perrin F X, Irigoyen M, Aragon E, et al. Artificial aging of acrylurethane and alkyd paints: A micro-ATR spectroscopic study [J]. Polym. Degrad. Stab., 2000, 70: 469
[13] Ahmed S, Shi H W, Gao N J, et al. Visible light-triggered smart photoreversible color switching systems based on VOx QDs for constructing smart corrosion resistant coatings on AA2024-T3 [J]. Chem. Eng. J., 2023, 452: 139569
[14] Uzoma P C, Wang Q M, Zhang W Y, et al. Investigation of the wettability, anticorrosion, and accelerated weathering behaviors of siloxane-modified acrylic resin and functionalized graphene nanocomposite coatings on LY12 aluminum alloy [J]. J. Coat. Technol. Res., 2021, 18: 789
[15] Nwokolo I K, Shi H W, Ikeuba A I, et al. Epoxy coating containing CoMOF@MBT metal-organic framework for active protection of aluminum alloy [J]. Surf. Coat. Technol., 2024, 477: 130349
[16] Shi X T, Wang Y, Li H Y, et al. Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy [J]. J. Alloy. Compd., 2020, 823: 153721
[17] Zhu H Z, Yue L F, Zhuang C, et al. Fabrication and characterization of self-assembled graphene oxide/silane coatings for corrosion resistance [J]. Surf. Coat. Technol., 2016, 304: 76
[18] Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
[19] Wang H R, Zhou Q X. Evaluation and failure analysis of linseed oil encapsulated self-healing anticorrosive coating [J]. Prog. Org. Coat., 2018, 118: 108
[20] Yang X F, Tallman D E, Bierwagen G P, et al. Blistering and degradation of polyurethane coatings under different accelerated weathering tests [J]. Polym. Degrad. Stab., 2002, 77: 103
[21] Yang X F, Vang C, Tallman D E, et al. Weathering degradation of a polyurethane coating [J]. Polym. Degrad. Stab., 2001, 74: 341
[22] Trinh D, Vosgien-Lacombre C, Bouvet G, et al. Use of ionic liquids in SECM experiments to distinguish effects of temperature and water in organic coating swelling [J]. Prog. Org. Coat., 2020, 139: 105438
[23] Hu J W, Li X G, Gao J, et al. UV aging characterization of epoxy varnish coated steel upon exposure to artificial weathering environment [J]. Mater. Des., 2009, 30: 1542
[24] Cao S D. Application of yellow index in appraisal of ageing properties of plastics [J]. Qilu Petrochem. Technol., 2006, 34: 446
[24] 曹树东. 黄色指数在塑料老化性能评价方面的应用 [J]. 齐鲁石油化工, 2006, 34: 446
[25] Galant C, Fayolle B, Kuntz M, et al. Thermal and radio-oxidation of epoxy coatings [J]. Prog. Org. Coat., 2010, 69: 322
[26] Zhang T Y, Zhang T, He Y T, et al. Aging and corrosion behavior of epoxy primer coated aluminum alloys in UVA, UVA-neutral and UVA-acidic alternating-immersion environments [J]. Eng. Fail. Anal., 2021, 130: 105759
[27] Yan C X, Cao J P, Yu Y. Aging behavior and protective performance of epoxy coating in atmospheric environment [J]. Plat. Finish., 2021, 43(6): 50
[27] 颜晨曦, 曹建平, 于 洋. 大气环境下环氧涂层的老化行为及防护性能 [J]. 电镀与精饰, 2021, 43(6): 50
[28] Tang Y M, Cao J Y, Qu S, et al. Degradation of a high build epoxy primer/polyurethane composite coatings under cyclic wet-dry conditions [J]. Int. J. Electrochem. Sci., 2018, 13: 3874
[1] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[2] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[3] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[4] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[5] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[6] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[7] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[8] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[9] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[10] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[11] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[12] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[13] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[14] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[15] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.