Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 747-756     CSTR: 32134.14.1005.4537.2024.115      DOI: 10.11902/1005.4537.2024.115
  研究报告 本期目录 | 过刊浏览 |
N-(羟甲基)丙烯酰胺(NMA)改性丙烯酸树脂的合成及其防污性能研究
田秋梅, 倪春花, 骆云鹏, 王言建, 许豪, 李霞, 于良民, 闫雪峰()
中国海洋大学 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Preparation and Antifouling Properties of N-Methylol Acrylamide (NMA)-Modified Acrylic Resins
TIAN Qiumei, NI Chunhua, LUO Yunpeng, WANG Yanjian, XU Hao, LI Xia, YU Liangmin, YAN Xuefeng()
Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, Qingdao 266100, China
引用本文:

田秋梅, 倪春花, 骆云鹏, 王言建, 许豪, 李霞, 于良民, 闫雪峰. N-(羟甲基)丙烯酰胺(NMA)改性丙烯酸树脂的合成及其防污性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 747-756.
Qiumei TIAN, Chunhua NI, Yunpeng LUO, Yanjian WANG, Hao XU, Xia LI, Liangmin YU, Xuefeng YAN. Preparation and Antifouling Properties of N-Methylol Acrylamide (NMA)-Modified Acrylic Resins[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 747-756.

全文: PDF(13919 KB)   HTML
摘要: 

将N-(羟甲基)丙烯酰胺(NMA)引入丙烯酸自抛光树脂体系制备了具有自交联特性和防污性能的RZn-NMA-X自更新涂层。通过将自抛光树脂与亲水性交联网络相结合,在60 d的静态泡水实验中,RZn-NMA-X涂层在海水中展现出稳定的水解速率和稳定的成膜表面。实验室生物测定和150 d海洋现场测试表明,RZn-NMA-X聚合物具有良好的防污性能,最佳含量为5%NMA。研究表明,适量NMA的引入不仅增强了涂层防污性能,而且较好的表面特性为其逐步抛光,抵抗生物污损提供保障,有利于增加海洋设备服役时长。本工作所提制备方法简单,原料廉价易得,可用于防污应用的规模化生产。

关键词 丙烯酸树脂自抛光自交联防污N-(羟甲基)丙烯酰胺(NMA)    
Abstract

A novel self-renewable coating RZn-NMA-X with self-crosslinking properties and antifouling performance was prepared by introducing N-Methylol acrylamide (NMA) into a self-polishing acrylic resin. The coating formed by the combination of a self-polishing resin with a hydrophilic crosslinking network referred to as RZn-NMA-X, exhibited a stable hydrolysis rate and stable film-forming surface in seawater in a 60 d static soaking test. The laboratory bioassay and 150 d marine field test showed that the RZn-NMA-X polymer has good antifouling properties with an optimal content of 5%NMA. In conclusion, the incorporation of an appropriate amount of NMA not only enhances the antifouling performance of the coating, but also provides assurance for its gradual polishing and resistance to biofouling due to its favorable surface characteristics, which is beneficial for enhancing the longevity of marine antifouling in coating applications. The preparation method suggested in this study is straightforward, and the raw materials are affordable and readily available, making it suitable for large-scale production in antifouling applications.

Key wordsacrylic resin    self-polishing    self-crosslinking    antifouling    N-Methylol acrylamide (NMA)
收稿日期: 2024-04-07      32134.14.1005.4537.2024.115
ZTFLH:  TG174  
基金资助:国家自然科学基金(U22A20112);海南省自然科学基金(522CXTD520);山东省重点研发项目(2022CXGC020401)
通讯作者: 闫雪峰,E-mail:yanxuefeng@ouc.edu.cn,研究方向为海洋防护材料
Corresponding author: YAN Xuefeng, E-mail: yanxuefeng@ouc.edu.cn
作者简介: 田秋梅,女,1997年生,硕士生
图1  RZn-NMA-X聚合物的合成路线和合成工艺
SampleBAEAAANMAZnOBenzoic acid
RZn-NMA-035%45%20%0%20%20%
RZn-NMA-535%40%20%5%20%20%
RZn-NMA-1035%35%20%10%20%20%
RZn-NMA-1535%30%20%15%20%20%
RZn-NMA-2035%25%20%20%20%20%
表1  RZn-NMA-X聚合物的实验配方
图2  N. closterium的波长扫描图和标准曲线
SamplePrepolymer conversion rateResin conversion rateResin viscosityFilm-forming state
RZn-NMA-096.8%92.3%5240 cPNon-cracking
RZn-NMA-593.5%90.2%6080 cPNon-cracking
RZn-NMA-1095.2%92.2%16160 cPNon-cracking
RZn-NMA-1594.6%91.5%23160 cPNon-cracking
RZn-NMA-2094.8%93.4%OverrangeCracking
表2  RZn-NMA-X树脂的基本指标
图3  含NMA的丙烯酸聚合物的FTIR光谱
图4  RZn-NMA-X聚合物涂层的附着力
图5  RZn-NMA-X聚合物涂层的质量损失随浸泡时间的变化和在海水中浸泡50 d前后的接触角变化
图6  RZn-NMA-X聚合物涂层浸泡不同时间后的表面数码图像,激光共聚焦形貌图,激光共聚焦三维形貌及粗糙度变化
图7  RZn-NMA-X聚合物涂层对假交替单胞菌的抗菌作用和抗菌率
图8  RZn-NMA-X对N. closterium的生长抑制曲线
图9  RZn-NMA-X聚合物涂层在胶州湾海域浸泡30~150 d后的污损生物附着情况
SampleNumber of barnaclesScore
RZn-NMA-01184
RZn-NMA-5293
RZn-NMA-10590
RZn-NMA-151085
表3  测试面板浸泡150 d的防污打分结果
图10  RZn-NMA-X聚合物涂层的防污机理
[1] Jin H C, Tian L M, Bing W, et al. Bioinspired marine antifouling coatings: Status, prospects, and future [J]. Prog. Mater. Sci., 2022, 124: 100889
[2] Ferreira O, Rijo P, Gomes J F, et al. Biofouling inhibition with grafted econea biocide: Toward a nonreleasing eco-friendly multiresistant antifouling coating [J]. ACS Sustainable Chem. Eng., 2020, 8: 12
[3] Yebra D M, Kiil S, Dam-Johansen K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings [J]. Prog. Org. Coat., 2004, 50: 75
[4] Maan A M C, Hofman A H, de Vos W M, et al. Recent developments and practical feasibility of polymer-based antifouling coatings [J]. Adv. Funct. Mater., 2020, 30: 2000936
[5] Schultz M P, Bendick J A, Holm E R, et al. Economic impact of biofouling on a naval surface ship [J]. Biofouling, 2011, 27: 87
[6] Dafforn K A, Lewis J A, Johnston E L. Antifouling strategies: History and regulation, ecological impacts and mitigation [J]. Mar. Pollut. Bull., 2011, 62: 453
[7] Lejars M, Margaillan A, Bressy C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings [J]. Chem. Rev., 2012, 112: 4347
[8] Nurioglu A G, Esteves A C C, de With G. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications [J]. J. Mater. Chem. B, 2015, 3: 6547
[9] Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
[9] 柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278
[10] Hu J Z, Shangguan J Y, Deng P C, et al. Effect of barnacle adhesion on corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1145
[10] 胡杰珍, 上官桔钰, 邓培昌 等. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1145
[11] Ma S D, Chen X, Tai Y, et al. Ecological study on fouling organisms in a marine environmental test station situated at Sanya bay [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 38
[11] 马士德, 陈 新, 邰 余 等. 三亚海洋环境试验站污损生物生态研究 [J]. 中国腐蚀与防护学报, 2024, 44: 38
[12] Almeida E, Diamantino T C, de Sousa O. Marine paints: The particular case of antifouling paints [J]. Prog. Org. Coat., 2007, 59: 2
[13] Amara I, Miled W, Slama R B, et al. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review [J]. Environ. Toxicol. Pharmacol., 2018, 57: 115
[14] Callow J A, Callow M E. Trends in the development of environmentally friendly fouling-resistant marine coatings [J]. Nat. Commun., 2011, 2: 244
[15] Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms [J]. Adv. Mater., 2011, 23: 690
[16] Sha J N, Chen R R, Yu J, et al. Dynamic multi-level microstructured antifouling surfaces by combining quaternary ammonium modified go with self-polishing copolymers [J]. Carbon, 2023, 201: 1038
[17] Chen R R, Li Y K, Tang L, et al. Synthesis of zinc-based acrylate copolymers and their marine antifouling application [J]. RSC Adv., 2017, 7: 40020
[18] Xu W T, Ma C F, Ma J L, et al. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 4017
[19] Li N, Xu Z, Zheng S, et al. Superamphiphilic TiO2 composite surface for protein antifouling [J]. Adv. Mater., 2021, 33: 2003559
[20] Huang Z X, Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability [J]. Adv. Colloid Interface Sci., 2020, 284: 102264
[21] Leng C, Hung H C, Sun S W, et al. Probing the surface hydration of nonfouling zwitterionic and peg materials in contact with proteins [J]. ACS Appl. Mater. Interfaces, 2015, 7: 16881
[22] Wu J, Zhao C, Hu R D, et al. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers [J]. Acta Biomater., 2014, 10: 751
[23] Koschitzki F, Wanka R, Sobota L, et al. Amphiphilic dicyclopentenyl/carboxybetaine-containing copolymers for marine fouling-release applications [J]. ACS Appl. Mater. Interfaces, 2020, 12: 34148
[24] Ye Q, He B L, Zhang Y, et al. Grafting robust thick zwitterionic polymer brushes via subsurface-initiated ring-opening metathesis polymerization for antimicrobial and anti-biofouling [J]. ACS Appl. Mater. Interfaces, 2019, 11: 39171
[25] Guo S S, Jańczewski D, Zhu X Y, et al. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications [J]. J. Colloid Interface Sci., 2015, 452: 43
[26] Kardela J H, Millichamp I S, Ferguson J, et al. Nonfreezable water and polymer swelling control the marine antifouling performance of polymers with limited hydrophilic content [J]. ACS Appl. Mater. Interfaces, 2019, 11: 29477
[27] Dai G X, Xie Q Y, Chen S S, et al. Biodegradable poly(ester)-poly(methyl methacrylate) copolymer for marine anti-biofouling [J]. Prog. Org. Coat., 2018, 124: 55
[28] Parvate S, Mahanwar P. Advances in self-crosslinking of acrylic emulsion: What we know and what we would like to know [J]. J. Dispers. Sci. Technol., 2019, 40: 519
[29] Chen L J, Wu F Q, Li D S, et al. Preparation of self-crosslinked acrylate emulsion with high elasticity and its rheological properties [J]. J. Cent. South Univ. Technol., 2008, 15: 324
[30] Wei L M, Hou Z Y. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries [J]. J. Mater. Chem. A, 2017, 5: 22156
[31] Sun J Y, Lin X Y, Qiu Y H, et al. In situ polymerization of N-methylol acrylamide (NMA) for bamboo anti-mold modification [J]. Constr. Build. Mater., 2023, 363: 129887
[32] Chen L J, Wu F Q. Preparation and characterization of novel self cross-linking fluorinated acrylic latex [J]. J. Appl. Polym. Sci., 2012, 123: 1997
[33] Gu Y, Cheng L, Gu Z B, et al. Preparation, characterization and properties of starch-based adhesive for wood-based panels [J]. Int. J. Biol. Macromol., 2019, 134: 247
[34] Zhou Y, Chen G B, Yan S G, et al. Epoxy composite coating with excellent anticorrosion and self-healing properties based on acrylate copolymers [J]. Prog. Org. Coat., 2022, 172: 107098
[35] Wang X, Yang J, Liu Z X, et al. Antifouling property of Cu2O-free self-polishing antifouling coatings based on amide derivatives inspired by capsaicin [J]. Langmuir, 2022, 38: 10244
[36] Khotbehsara M M, Manalo A, Aravinthan T, et al. Effects of ultraviolet solar radiation on the properties of particulate-filled epoxy based polymer coating [J]. Polym. Degrad. Stab., 2020, 181: 109352
[37] Ni C H, Feng K, Li X, et al. Study on the preparation and properties of new environmentally friendly antifouling acrylic metal salt resins containing indole derivative group [J]. Prog. Org. Coat., 2020, 148: 105824
[38] Liu C, Xie Q Y, Ma C F, et al. Fouling release property of polydimethylsiloxane-based polyurea with improved adhesion to substrate [J]. Ind. Eng. Chem. Res., 2016, 55: 6671
[39] Hu P. Preparation and properties of fouling resistant silicone-based marine antifouling coatings [D]. Guangzhou: South China University of Technology, 2022
[39] 胡 朋. 污损阻抗型有机硅基海洋防污涂层的制备与性能研究 [D]. 广州: 华南理工大学, 2022
[40] Hu P, Xie Q Y, Ma C F, et al. Fouling resistant silicone coating with self-healing induced by metal coordination [J]. Chem. Eng. J., 2021, 406: 126870
[41] Han X, Wu J H, Zhang X H, et al. Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61: 46
[42] Bressy C, Margaillan A, Faÿ F, et al. 18-Tin-free self-polishing marine antifouling coatings [A]. HellioC, YebraD. Advances in Marine Antifouling Coatings and Technologies [M]. Oxford: Woodhead, 2009: 445-491
[43] Zhang J B, Liu Y Z, Wang X W, et al. Self-polishing emulsion platforms: Eco-friendly surface engineering of coatings toward water borne marine antifouling [J]. Prog. Org. Coat., 2020, 149: 105945
[44] Jafarzadeh S, Rhim J W, Alias A K, et al. Application of antimicrobial active packaging film made of semolina flour, nano zinc oxide and nano-kaolin to maintain the quality of low-moisture mozzarella cheese during low-temperature storage [J]. J. Sci. Food Agric., 2019, 99: 2716
[45] Mahamuni-Badiger P P, Patil P M, Badiger M V, et al. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles [J]. Mater. Sci. Eng., 2020, 108C: 110319
[46] Wang X, Yu L M, Li F C, et al. Synthesis of amide derivatives containing capsaicin and their antioxidant and antibacterial activities [J]. J. Food Biochem., 2019, 43: e13061
[47] Zhou W J, Wang Y J, Ni C H, et al. Preparation and evaluation of natural rosin-based zinc resins for marine antifouling [J]. Prog. Org. Coat., 2021, 157: 106270
[48] Hepler P K. Calcium: A central regulator of plant growth and development [J]. Plant Cell, 2005, 17: 2142
[1] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[2] 郑绍军,王瑜,朱瑞,谷永东,杨丹丹,蔡星伟. 人工合成类天然产物防污剂的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(5): 389-397.
[3] 刘姣, 何其伟, 陈洪, 陈宇, 张昭, 张鉴清. 船舶防污涂料的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(6): 483-488.
[4] 李丽玲; 程永清; 张凯 . 无毒防污涂料最新研究进展[J]. 中国腐蚀与防护学报, 2008, 28(3): 181-185 .
[5] 董磊; 于良民; 姜晓辉; 江涛 . 氧化亚铜的疏水改性及其对防污涂料性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(1): 20-24 .
[6] 徐海波; 付洪田; 赵广宇 . 铜阳极活性区溶解机制的电化学研究[J]. 中国腐蚀与防护学报, 1999, 19(1): 27-32 .