|
|
N-(羟甲基)丙烯酰胺(NMA)改性丙烯酸树脂的合成及其防污性能研究 |
田秋梅, 倪春花, 骆云鹏, 王言建, 许豪, 李霞, 于良民, 闫雪峰( ) |
中国海洋大学 海洋化学理论与工程技术教育部重点实验室 青岛 266100 |
|
Preparation and Antifouling Properties of N-Methylol Acrylamide (NMA)-Modified Acrylic Resins |
TIAN Qiumei, NI Chunhua, LUO Yunpeng, WANG Yanjian, XU Hao, LI Xia, YU Liangmin, YAN Xuefeng( ) |
Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, Qingdao 266100, China |
引用本文:
田秋梅, 倪春花, 骆云鹏, 王言建, 许豪, 李霞, 于良民, 闫雪峰. N-(羟甲基)丙烯酰胺(NMA)改性丙烯酸树脂的合成及其防污性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 747-756.
Qiumei TIAN,
Chunhua NI,
Yunpeng LUO,
Yanjian WANG,
Hao XU,
Xia LI,
Liangmin YU,
Xuefeng YAN.
Preparation and Antifouling Properties of N-Methylol Acrylamide (NMA)-Modified Acrylic Resins[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 747-756.
[1] |
Jin H C, Tian L M, Bing W, et al. Bioinspired marine antifouling coatings: Status, prospects, and future [J]. Prog. Mater. Sci., 2022, 124: 100889
|
[2] |
Ferreira O, Rijo P, Gomes J F, et al. Biofouling inhibition with grafted econea biocide: Toward a nonreleasing eco-friendly multiresistant antifouling coating [J]. ACS Sustainable Chem. Eng., 2020, 8: 12
|
[3] |
Yebra D M, Kiil S, Dam-Johansen K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings [J]. Prog. Org. Coat., 2004, 50: 75
|
[4] |
Maan A M C, Hofman A H, de Vos W M, et al. Recent developments and practical feasibility of polymer-based antifouling coatings [J]. Adv. Funct. Mater., 2020, 30: 2000936
|
[5] |
Schultz M P, Bendick J A, Holm E R, et al. Economic impact of biofouling on a naval surface ship [J]. Biofouling, 2011, 27: 87
|
[6] |
Dafforn K A, Lewis J A, Johnston E L. Antifouling strategies: History and regulation, ecological impacts and mitigation [J]. Mar. Pollut. Bull., 2011, 62: 453
|
[7] |
Lejars M, Margaillan A, Bressy C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings [J]. Chem. Rev., 2012, 112: 4347
|
[8] |
Nurioglu A G, Esteves A C C, de With G. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications [J]. J. Mater. Chem. B, 2015, 3: 6547
|
[9] |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
[9] |
柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278
|
[10] |
Hu J Z, Shangguan J Y, Deng P C, et al. Effect of barnacle adhesion on corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1145
|
[10] |
胡杰珍, 上官桔钰, 邓培昌 等. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1145
|
[11] |
Ma S D, Chen X, Tai Y, et al. Ecological study on fouling organisms in a marine environmental test station situated at Sanya bay [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 38
|
[11] |
马士德, 陈 新, 邰 余 等. 三亚海洋环境试验站污损生物生态研究 [J]. 中国腐蚀与防护学报, 2024, 44: 38
|
[12] |
Almeida E, Diamantino T C, de Sousa O. Marine paints: The particular case of antifouling paints [J]. Prog. Org. Coat., 2007, 59: 2
|
[13] |
Amara I, Miled W, Slama R B, et al. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review [J]. Environ. Toxicol. Pharmacol., 2018, 57: 115
|
[14] |
Callow J A, Callow M E. Trends in the development of environmentally friendly fouling-resistant marine coatings [J]. Nat. Commun., 2011, 2: 244
|
[15] |
Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms [J]. Adv. Mater., 2011, 23: 690
|
[16] |
Sha J N, Chen R R, Yu J, et al. Dynamic multi-level microstructured antifouling surfaces by combining quaternary ammonium modified go with self-polishing copolymers [J]. Carbon, 2023, 201: 1038
|
[17] |
Chen R R, Li Y K, Tang L, et al. Synthesis of zinc-based acrylate copolymers and their marine antifouling application [J]. RSC Adv., 2017, 7: 40020
|
[18] |
Xu W T, Ma C F, Ma J L, et al. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation [J]. ACS Appl. Mater. Interfaces, 2014, 6: 4017
|
[19] |
Li N, Xu Z, Zheng S, et al. Superamphiphilic TiO2 composite surface for protein antifouling [J]. Adv. Mater., 2021, 33: 2003559
|
[20] |
Huang Z X, Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability [J]. Adv. Colloid Interface Sci., 2020, 284: 102264
|
[21] |
Leng C, Hung H C, Sun S W, et al. Probing the surface hydration of nonfouling zwitterionic and peg materials in contact with proteins [J]. ACS Appl. Mater. Interfaces, 2015, 7: 16881
|
[22] |
Wu J, Zhao C, Hu R D, et al. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers [J]. Acta Biomater., 2014, 10: 751
|
[23] |
Koschitzki F, Wanka R, Sobota L, et al. Amphiphilic dicyclopentenyl/carboxybetaine-containing copolymers for marine fouling-release applications [J]. ACS Appl. Mater. Interfaces, 2020, 12: 34148
|
[24] |
Ye Q, He B L, Zhang Y, et al. Grafting robust thick zwitterionic polymer brushes via subsurface-initiated ring-opening metathesis polymerization for antimicrobial and anti-biofouling [J]. ACS Appl. Mater. Interfaces, 2019, 11: 39171
|
[25] |
Guo S S, Jańczewski D, Zhu X Y, et al. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications [J]. J. Colloid Interface Sci., 2015, 452: 43
|
[26] |
Kardela J H, Millichamp I S, Ferguson J, et al. Nonfreezable water and polymer swelling control the marine antifouling performance of polymers with limited hydrophilic content [J]. ACS Appl. Mater. Interfaces, 2019, 11: 29477
|
[27] |
Dai G X, Xie Q Y, Chen S S, et al. Biodegradable poly(ester)-poly(methyl methacrylate) copolymer for marine anti-biofouling [J]. Prog. Org. Coat., 2018, 124: 55
|
[28] |
Parvate S, Mahanwar P. Advances in self-crosslinking of acrylic emulsion: What we know and what we would like to know [J]. J. Dispers. Sci. Technol., 2019, 40: 519
|
[29] |
Chen L J, Wu F Q, Li D S, et al. Preparation of self-crosslinked acrylate emulsion with high elasticity and its rheological properties [J]. J. Cent. South Univ. Technol., 2008, 15: 324
|
[30] |
Wei L M, Hou Z Y. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries [J]. J. Mater. Chem. A, 2017, 5: 22156
|
[31] |
Sun J Y, Lin X Y, Qiu Y H, et al. In situ polymerization of N-methylol acrylamide (NMA) for bamboo anti-mold modification [J]. Constr. Build. Mater., 2023, 363: 129887
|
[32] |
Chen L J, Wu F Q. Preparation and characterization of novel self cross-linking fluorinated acrylic latex [J]. J. Appl. Polym. Sci., 2012, 123: 1997
|
[33] |
Gu Y, Cheng L, Gu Z B, et al. Preparation, characterization and properties of starch-based adhesive for wood-based panels [J]. Int. J. Biol. Macromol., 2019, 134: 247
|
[34] |
Zhou Y, Chen G B, Yan S G, et al. Epoxy composite coating with excellent anticorrosion and self-healing properties based on acrylate copolymers [J]. Prog. Org. Coat., 2022, 172: 107098
|
[35] |
Wang X, Yang J, Liu Z X, et al. Antifouling property of Cu2O-free self-polishing antifouling coatings based on amide derivatives inspired by capsaicin [J]. Langmuir, 2022, 38: 10244
|
[36] |
Khotbehsara M M, Manalo A, Aravinthan T, et al. Effects of ultraviolet solar radiation on the properties of particulate-filled epoxy based polymer coating [J]. Polym. Degrad. Stab., 2020, 181: 109352
|
[37] |
Ni C H, Feng K, Li X, et al. Study on the preparation and properties of new environmentally friendly antifouling acrylic metal salt resins containing indole derivative group [J]. Prog. Org. Coat., 2020, 148: 105824
|
[38] |
Liu C, Xie Q Y, Ma C F, et al. Fouling release property of polydimethylsiloxane-based polyurea with improved adhesion to substrate [J]. Ind. Eng. Chem. Res., 2016, 55: 6671
|
[39] |
Hu P. Preparation and properties of fouling resistant silicone-based marine antifouling coatings [D]. Guangzhou: South China University of Technology, 2022
|
[39] |
胡 朋. 污损阻抗型有机硅基海洋防污涂层的制备与性能研究 [D]. 广州: 华南理工大学, 2022
|
[40] |
Hu P, Xie Q Y, Ma C F, et al. Fouling resistant silicone coating with self-healing induced by metal coordination [J]. Chem. Eng. J., 2021, 406: 126870
|
[41] |
Han X, Wu J H, Zhang X H, et al. Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61: 46
|
[42] |
Bressy C, Margaillan A, Faÿ F, et al. 18-Tin-free self-polishing marine antifouling coatings [A]. HellioC, YebraD. Advances in Marine Antifouling Coatings and Technologies [M]. Oxford: Woodhead, 2009: 445-491
|
[43] |
Zhang J B, Liu Y Z, Wang X W, et al. Self-polishing emulsion platforms: Eco-friendly surface engineering of coatings toward water borne marine antifouling [J]. Prog. Org. Coat., 2020, 149: 105945
|
[44] |
Jafarzadeh S, Rhim J W, Alias A K, et al. Application of antimicrobial active packaging film made of semolina flour, nano zinc oxide and nano-kaolin to maintain the quality of low-moisture mozzarella cheese during low-temperature storage [J]. J. Sci. Food Agric., 2019, 99: 2716
|
[45] |
Mahamuni-Badiger P P, Patil P M, Badiger M V, et al. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles [J]. Mater. Sci. Eng., 2020, 108C: 110319
|
[46] |
Wang X, Yu L M, Li F C, et al. Synthesis of amide derivatives containing capsaicin and their antioxidant and antibacterial activities [J]. J. Food Biochem., 2019, 43: e13061
|
[47] |
Zhou W J, Wang Y J, Ni C H, et al. Preparation and evaluation of natural rosin-based zinc resins for marine antifouling [J]. Prog. Org. Coat., 2021, 157: 106270
|
[48] |
Hepler P K. Calcium: A central regulator of plant growth and development [J]. Plant Cell, 2005, 17: 2142
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|