|
|
海洋环境中金属材料微生物腐蚀研究进展 |
王宇晗1, 李俊1, 刘恒维2, 许楠2, 刘杰1, 陈旭1( ) |
1.辽宁石油化工大学石油天然气工程学院 抚顺 113001 2.大连海洋大学应用技术学院 大连 116300 |
|
Research Progress of Microbial Corrosion of Metallic Materials in Marine Environment |
WANG Yuhan1, LI Jun1, LIU Hengwei2, XU Nan2, LIU Jie1, CHEN Xu1( ) |
1.College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China 2.Applied Technology College, Dalian Ocean University, Dalian 116300, China |
引用本文:
王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
Yuhan WANG,
Jun LI,
Hengwei LIU,
Nan XU,
Jie LIU,
Xu CHEN.
Research Progress of Microbial Corrosion of Metallic Materials in Marine Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 577-588.
[1] |
Li Y C, Xie F, Li J, et al. Study of corrosion behavior of X52 steel in marine environment [J]. J. Liaoning Univ. Pet. Chem. Technol., 2022, 42(5): 26
|
[1] |
李翌晨, 谢 飞, 李 健 等. 海洋环境下X52管线钢的腐蚀行为研究 [J]. 辽宁石油化工大学学报, 2022, 42(5): 26
|
[2] |
Chen W, Liu H F, Wu G Y, et al. Corrosion behavior and mechanism of N80 steel caused by sulfate reducing bacteria in CO2-saturated shale gas field produced water at 60 ℃ [J]. Int. J. Electrochem. Sci., 2024, 19: 100418
|
[3] |
Wang T. Electrochemical study of microbiologically influenced corrosion on copper- nickel alloy in marine environment [D]. Harbin: Harbin University of Science and Technology, 2009
|
[3] |
王 涛. 新型铜镍合金海水微生物腐蚀的电化学研究 [D]. 哈尔滨: 哈尔滨理工大学, 2009
|
[4] |
Wang H Y, Wu M, Xie F, et al. Effect of external magnetic field on microbial corrosion in oil and gas pipeline [J]. J. Liaoning Univ. Pet. Chem. Technol., 2016, 36(4): 29
|
[4] |
王海燕, 吴 明, 谢 飞 等. 外加磁场对油气管线微生物腐蚀的影响 [J]. 辽宁石油化工大学学报, 2016, 36(4): 29
|
[5] |
Zuo R J. Biofilms: strategies for metal corrosion inhibition employing microorganisms [J]. Appl. Microbiol. Biotechnol., 2007, 76: 1245
pmid: 17701408
|
[6] |
Liu P, Zhang H T, Fan Y Q, et al. Microbially influenced corrosion of steel in marine environments: a review from mechanisms to prevention [J]. Microorganisms, 2023, 11: 2299
|
[7] |
Zhang D, Wu J J. Research progress on the mechanisms of microbiologically influenced corrosion in marine environment [J]. Oceanol. Limnol. Sin., 2020, 51: 821
|
[7] |
张 盾, 吴佳佳. 海洋环境微生物腐蚀机理研究进展 [J]. 海洋与湖沼, 2020, 51: 821
|
[8] |
Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
|
[8] |
曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
|
[9] |
Sun C, Han E-H, Wang X. Effects of srb on corrosion of carbon steel in seamud [J]. Corros. Sci. Prot. Technol., 2003, 15: 104
|
[9] |
孙 成, 韩恩厚, 王 旭. 海泥中硫酸盐还原菌对碳钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2003, 15: 104
|
[10] |
Zhao X, Duan J, Hou B, et al. Corrosion of mild steel in sea mud containing sulphate reducing bacteria [J]. Can. Metall. Quart., 2014, 53: 450
|
[11] |
Huang L, Wang Q. Experimental research on microbial corrosion of Q235 steel in insimulated seawater solution [J]. Total Corros. Control, 2017, 31(5): 53
|
[11] |
黄 璐, 王 乾. 海水模拟溶液中Q235钢微生物腐蚀规律的实验研究 [J]. 全面腐蚀控制, 2017, 31(5): 53
|
[12] |
Li X, Chen X, Song W Q, et al. Effect of pH value on microbial corrosion behavior of X70 steel in a sea mud extract simulated solution [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 565
|
[12] |
李 鑫, 陈 旭, 宋武琦 等. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 565
|
[13] |
Wan Y, Zhang D, Liu H Q, et al. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions [J]. Electrochim. Acta, 2010, 55: 1528
|
[14] |
Li J M, Wang D, Jiang J T, et al. Corrosion behavior of X70 steel in South China sea environment [J]. J. Liaoning Univ. Pet. Chem. Technol., 2022, 42(6): 49
|
[14] |
李佳蔓, 王 丹, 姜锦涛 等. X70管线钢在南海环境下的腐蚀行为研究 [J]. 辽宁石油化工大学学报, 2022, 42(6): 49
|
[15] |
Brioukhanov A L, Netrusov A I. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review [J]. Appl. Biochem. Microbiol., 2007, 43: 567
|
[16] |
Chi P J, Yang J, Sun Y H X, et al. Research progress in sulfate-reducing bacteria corrosion of metal materials [J]. Liaoning. Chem. Ind., 2023, 52: 1027
|
[16] |
池坪礁, 杨 杰, 孙宇海漩 等. 金属材料的硫酸盐还原菌腐蚀研究进展 [J]. 辽宁化工, 2023, 52: 1027
|
[17] |
Von Wolzogen Kuehr C A H, van der Vlugt L S. The graphitization of cast iron as an electrobiochemical process in anaerobic soils [J]. Water, 1934, 18: 53
|
[18] |
Liu T, Liu H, Hu Y, et al. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. Mater. Corros., 2009, 60: 218
|
[19] |
Gu T Y. New understandings of biocorrosion mechanisms and their classifications [J]. J. Microb. Biochem. Technol., 2012, 4: iii
|
[20] |
Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
|
[20] |
黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
|
[21] |
Starkey R L. Interrelations between microorganisms and plant roots in the rhizosphere [J]. Bacteriol. Rev., 1958, 22: 154
doi: 10.1128/br.22.3.154-172.1958
pmid: 13572279
|
[22] |
Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
|
[23] |
Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation [J]. Corros. Sci., 2019, 150: 258
|
[24] |
Xu Z X, Zhang F, Zhang T S, et al. Unique corrosion reinforcement mechanism of pipeline oil sludge with sulfate-reducing bacteria on X60 steel and the targeted long-term inhibition of dazomet delivery [J]. Corros. Sci., 2024, 228: 111792
|
[25] |
Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
doi: 10.1016/j.jmst.2018.02.023
|
[26] |
Alrammah F, Xu L J, Patel N, et al. Conductive magnetic nanowires accelerated electron transfer between C1020 carbon steel and Desulfovibrio vulgaris biofilm [J]. Sci. Total Environ., 2024, 925: 171763
|
[27] |
Gu T Y, Xu D K. Demystifying MIC mechanisms [A]. NACE CORROSION [C]. Houston, 2010
|
[28] |
Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeter. Biodegr., 2014, 91: 74
|
[29] |
Zhang T S, Xu Z X, Wan H H, et al. Dual corrosion promotion of pipeline steel in sea mud induced by sulfate reducing bacteria: bacteria concentration cell and electronic conduction of the biofilms covered sand grains [J]. Corros. Sci., 2024, 232: 112005
|
[30] |
Li Y F, Ning C Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling [J]. Bioact. Mater., 2019, 4: 189
doi: 10.1016/j.bioactmat.2019.04.003
pmid: 31192994
|
[31] |
Zhou X B, Wang Q, Wang X K, et al. Study on corrosion behavior of X80 pipeline steel by sulfate-reducing bacteria in ocean tidal zone [A]. Abstract Collection of Papers from the 11th National Conference on Corrosion and Protection [C]. Shenyang, 2021: 782
|
[31] |
周小包, 王 琴, 王煊凯 等. 海洋潮汐区X80管线钢硫酸盐还原菌腐蚀行为研究 [A]. 第十一届全国腐蚀与防护大会论文摘要集 [C]. 沈阳, 2021: 782
|
[32] |
Dong X C, Zhai X F, Yang J, et al. Two metabolic stages of SRB strain Desulfovibrio bizertensis affecting corrosion mechanism of carbon steel Q235 [J]. Corros. Commun., 2023, 10: 56
|
[33] |
Liu H W, Chen C Y, Asif M, et al. Mechanistic investigations of corrosion and localized corrosion of X80 steel in seawater comprising sulfate-reducing bacteria under continuous carbon starvation [J]. Corros. Commun., 2022, 8: 70
|
[34] |
Zulkafli R, Othman N K, Yaakob N. Localised corrosion of API 5L X65 carbon steel in marine environments: the role of sulfate-reducing bacteria (SRB) [J]. J. Bio Tribo Corros., 2023, 9: 12
|
[35] |
Chen X, Xiao C C, Wang X T, et al. Corrosion behaviors of 2205 duplex stainless steel in biotic and abiotic NaCl solutions [J]. Constr. Build. Mater., 2022, 342: 127699
|
[36] |
Zhao Z L, Xiang J, Tan Y, et al. Preparation of superhydrophobic coating on 5083 aluminum alloy for corrosion protection in simulated marine environment containing SRB [J]. Phys. Met. Metallogr., 2021, 122: 1581
|
[37] |
de Andrade J S, Vieira M R S, Oliveira S H, et al. Study of microbiologically induced corrosion of 5052 aluminum alloy by sulfate-reducing bacteria in seawater [J]. Mater. Chem. Phys., 2020, 241: 122296
|
[38] |
Wang D, Yang C T, Zheng B R, et al. Microbiologically influenced corrosion of CoCrFeMnNi high entropy alloy by sulfate-reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 223: 111429
|
[39] |
Song Y, Chen S G. Effect of temperature on corrosion behavior of copper-nickel alloys by sulphate-reducing bacteria in anaerobic environment [J]. Surf. Technol., 2022, 51(3): 95
|
[39] |
宋 翼, 陈守刚. 温度对厌氧环境中硫酸盐还原菌所致铜镍合金腐蚀行为的影响 [J]. 表面技术, 2022, 51(3): 95
|
[40] |
Parthipan P, Cheng L, Dhandapani P, et al. Metagenomics diversity analysis of sulfate-reducing bacteria and their impact on biocorrosion and mitigation approach using an organometallic inhibitor [J]. Sci. Total Environ., 2022, 856: 159203
|
[41] |
Gao P, Zhang X T, Huang X M, et al. Genomic insight of sulfate reducing bacterial genus Desulfofaba reveals their metabolic versatility in biogeochemical cycling [J]. BMC Genomics, 2023, 24: 209
|
[42] |
Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
|
[43] |
Liu B, Fan E D, Jia J H, et al. Corrosion mechanism of nitrate reducing bacteria on X80 steel correlated to its intermediate metabolite nitrite [J]. Constr. Build. Mater., 2021, 303: 124454
|
[44] |
Wang Q. Studies on luminescence characteristics, bacteriostatic evaluation, and exploration of biofilm formation mechanism of Lux-tagged recombinant luminescent Pseudomonas aeruginosa [D]. Yangling: Northwest A&F University, 2020
|
[44] |
王 綪. LuX基因重组铜绿假单胞菌的发光特性、抑菌评估和生物膜形成机理探究 [D]. 杨凌: 西北农林科技大学, 2020
|
[45] |
Kannan K P, Gunasekaran V, Sreenivasan P, et al. Recent updates and feasibility of nanodrugs in the prevention and eradication of dental biofilm and its associated pathogens—a review [J]. J. Dent., 2024, 143: 104888
|
[46] |
Lu S H, He Y, Xu R C, et al. Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements [J]. Bioelectrochemistry, 2023, 151: 108377
|
[47] |
Pedersen A, Hermansson M. Inhibition of metal corrosion by bacteria [J]. Biofouling, 1991, 3: 1
|
[48] |
Li H B, Zhou E Z, Ren Y B, et al. Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa [J]. Corros. Sci., 2016, 111: 811
|
[49] |
Huang Y, Zhou E Z, Jiang C Y, et al. Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa [J]. Electrochem. Commun., 2018, 94: 9
|
[50] |
Liu D, Yang H Y, Li J H, et al. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2021, 79: 101
|
[51] |
Pérez-García J A, Bacame-Valenzuela F J, Manríquez J, et al. Electrochemical analysis of extracellular electron transfer process of Pseudomonas aeruginosa NEJ07R using pyocyanin on a carbon electrode [J]. J. Environ. Chem. Eng., 2023, 11: 110708
|
[52] |
Lu S H, Zhu H X, Xue N T, et al. Acceleration mechanism of riboflavin on Fe0-to-microbe electron transfer in corrosion of EH36 steel by Pseudomonas aeruginosa [J]. Sci. Total Environ., 2024, 939: 173613
|
[53] |
Pu Y, Hou S, Chen S G, et al. The combined effect of carbon starvation and exogenous riboflavin accelerated the Pseudomonas aeruginosa-induced nickel corrosion [J]. Bioelectrochemistry, 2024, 157: 108679
|
[54] |
Lou Y T, Dai C D, Chang W W, et al. Microbiologically influenced corrosion of Fecocrnimo0.1 high-entropy alloys by marine Pseudomonas aeruginosa [J]. Corros. Sci., 2020, 165: 108390
|
[55] |
Liu Y Z. Study of the corrosion behaviour of 2205 duplex stainless steel in the environment containing pseudomona saeruginosa [D]. Harbin: Harbin Engineering University, 2017
|
[55] |
刘玉芝. 2205双相不锈钢在含铜绿假单胞菌环境下的腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017
|
[56] |
Li C, Wu J J, Zhang D, et al. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone [J]. Water Res., 2023, 232: 119708
|
[57] |
Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
|
[58] |
Li J, Du C W, Liu Z Y, et al. Electrochemical studies of microbiologically influenced corrosion of X80 steel by nitrate-reducing Bacillus licheniformis under anaerobic conditions [J]. J. Mater. Sci. Technol., 2022, 118: 208
|
[59] |
Liu B, Sun M H, Lu F Y, et al. Study of biofilm-influenced corrosion on X80 pipeline steel by a nitrate-reducing bacterium, Bacillus cereus, in artificial Beijing soil [J]. Colloid. Surf., 2021, 197B: 111356
|
[60] |
Usher K M, Kaksonen A H, Bouquet D, et al. The role of bacterial communities and carbon dioxide on the corrosion of steel [J]. Corros. Sci., 2015, 98: 354
|
[61] |
Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
|
[62] |
Sachan R, Singh A K, Negi Y S. Study of microbially influenced corrosion in the presence of iron-oxidizing bacteria (Strain DASEWM2) [J]. J. Bio Tribo Corros., 2020, 6: 109
|
[63] |
Ababaf A N, Jafari E. Study of microbiologically influenced corrosion of the welded stainless steel 316L [J]. J. Mater. Eng. Perform., 2023, 32: 8162
|
[64] |
Li Z X, Lv M Y, Du M. Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211
|
[64] |
李振欣, 吕美英, 杜 敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 211
doi: 10.11902/1005.4537.2021.106
|
[65] |
Zhang L, Yu X, Wu Y L, et al. Galvanic corrosion of 20 carbon steel in simulated oilfield produced water containing iron-oxidizing bacteria [J]. Electropl. Finish., 2023, 42(10): 1
|
[65] |
张 丽, 于 鑫, 吴云龙 等. 铁氧化菌对20钢在模拟油田采出液中电偶腐蚀的影响 [J]. 电镀与涂饰, 2023, 42(10): 1
|
[66] |
Liang J H, Zhang J L. Discussion on corrosion mechanism and protection measures of water injection pipeline [J]. China Pet. Chem. Stand. Qual., 2023, 43(20): 32
|
[66] |
梁建宏, 张佳龙. 浅谈注水管道腐蚀机理与防护措施 [J]. 中国石油和化工标准与质量, 2023, 43(20): 32
|
[67] |
Zhou X, Qi Y M. Corrosion failure analysis of J55 tubing thread fastener for an electric pump well in an oil field [J]. Bao-Steel Technol., 2021, (2): 54
|
[67] |
周 雄, 齐亚猛. 某油田电泵井J55油管螺纹丝扣腐蚀失效分析 [J]. 宝钢技术, 2021, (2): 54
|
[68] |
Huang H W. Experimental study on MIC (SRB/TGB) of oil pipeline steels [D]. Beijing: China University of Petroleum (Beijing), 2020
|
[68] |
黄怀炜. 油田集输管线微生物(SRB/TGB)腐蚀实验研究 [D]. 北京: 中国石油大学(北京), 2020
|
[69] |
Tian X K. Study on the effect of symbiosis of sulfate reducing bacteria and total general bacteria on microbiologically influenced corrosion mechanism [D]. Beijing: China University of Petroleum (Beijing), 2020
|
[69] |
田宪凯. 硫酸盐还原菌与腐生菌共生对碳钢微生物腐蚀机制的影响研究 [D]. 北京: 中国石油大学(北京), 2020
|
[70] |
Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
|
[71] |
Qiu L N, Zhao D D, Zheng S J, et al. Inhibition effect of Pseudomonas stutzeri on the corrosion of X70 pipeline steel caused by sulfate-reducing bacteria [J]. Materials, 2023, 16: 2896
|
[72] |
Chen J N, Wu J J, Wang P, et al. Effect of Desulfovibrio sp. and Vibrio alginolyticus on corrosion behavior of 907 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 402
|
[72] |
陈菊娜, 吴佳佳, 王 鹏 等. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 402
doi: 10.11902/1005.4537.2017.024
|
[73] |
Guan J. Distribution and interaction of sulfate-reducing prokaryotes and nitrate-reducing prokaryotes in petroleum reservoirs [D]. Shanghai: East China University of Science and Technology, 2013
|
[73] |
管 婧. 油藏环境硫酸盐还原菌和硝酸盐还原菌的分布及相互作用研究 [D]. 上海: 华东理工大学, 2013
|
[74] |
Gu C X, Yu Y, Ji G J, et al. Corrosion behavior of 304 stainless steel under the combination action of mixed bacteria [J]. Ship Eng., 2011, 33(4): 100
|
[74] |
顾彩香, 于 阳, 吉桂军 等. 304不锈钢在混合菌种共同作用下的腐蚀行为 [J]. 船舶工程, 2011, 33(4): 100
|
[75] |
Kalajahi S T, Rasekh B, Yazdian F, et al. Corrosion behaviour of X60 steel in the presence of sulphate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) in seawater [J]. Corros. Eng. Sci. Technol., 2021, 56: 543
|
[76] |
Zhao T, He L J, Qiu Z H, et al. Synergistic effect between sulfate-reducing bacteria and shewanella algae on corrosion behavior of 321 stainless steel [J]. J. Mater. Res. Technol., 2023, 26: 4906
|
[77] |
Di X J, Pan H D, Yan M C, et al. Microbial corrosion of X60 pipeline steel in groundwater containing sulfate-reducing bacteria/iron-oxidizing bacteria mixed colonies [J]. J. Mater. Eng. Perform., 2023, doi: 10.1007/s11665-023-08801-9
|
[78] |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
|
[79] |
Zhang H Y, Tian Y M, Kang M X, et al. Electrochemical mechanism of 317L stainless steel under biofilms with coexistence of iron-oxidizing bacteria and sulfatereducing bacteria [J]. Int. J. Electrochem. Sci., 2019, 14: 10139
|
[80] |
Wang J, Lv M Y, Du M, et al. Effects of cathodic polarization on X65 steel inhibition behavior and mechanism of mixed microorganisms induced corrosion in seawater [J]. Corros. Sci., 2022, 208: 110670
|
[81] |
Xi G F, Zhao X D, Wang S, et al. Synergistic effect between sulfate-reducing bacteria and pseudomonas aeruginosa on corrosion behavior of Q235 steel [J]. Int. J. Electrochem. Sci., 2020, 15: 361
|
[82] |
Cai D L, Wu J Y, Chai K. Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria pseudomonas sp. and vibrio sp [J]. ACS Omega, 2021, 6: 3780
|
[83] |
Zhou X B, Wang Q, Su H, et al. Marine tidal corrosion of X80 pipeline steel under federative action of pseudomonas sp. and Desulfovibrio desulfuricans [J]. Int. Biodeter. Biodegr., 2024, 187: 105732
|
[84] |
Zhao X D, Yan C M, Shao J, et al. Influence of Pseudomonas aeruginosa and sulfate-reducing bacteria composite on the corrosion behavior of brass [J]. Int. J. Electrochem. Sci., 2019, 14: 6468
|
[85] |
Liu D, Hu Z S, Li M K, et al. Synergistic effect on corrosion behavior of X80 steel influenced by Pseudomonas aeruginosa and Acetobacter aceti [J]. Sep. Purif. Technol., 2024, 351: 128135
|
[86] |
Jin Y T, Li Z, Zhou E Z, et al. Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of shewanella oneidensis and bacillus licheniformis against 316l stainless steel [J]. Electrochim. Acta, 2019, 316: 93
|
[87] |
Du J, Li S M, Liu J H, et al. Corrosion behavior of steel Q235 co-influenced by Thiobacillus thiooxidans and Bacillus [J]. J. Beijing Univ. Aeronaut. Astronaut., 2014, 40: 31
|
[87] |
杜 娟, 李松梅, 刘建华 等. 氧化硫硫杆菌和芽孢杆菌协作下Q235钢腐蚀行为 [J]. 北京航空航天大学学报, 2014, 40: 31
|
[88] |
Li S M, Wang Y Q, Liu J H, et al. Synergism effect of thiobacillus ferrooxidans and thiobacillus thiooxidan on the corrosion behavior of steel Q235 [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 182
|
[88] |
李松梅, 王彦卿, 刘建华 等. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 182
|
[89] |
Moradi M, Yang Y, Xu D K, et al. Interspecies interactions of Vibrio azureus and Jeotgalibacillus alkaliphilus on corrosion of duplex stainless steel [J]. Int. Biodeter. Biodegr., 2021, 160: 105212
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|