Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 423-430     CSTR: 32134.14.1005.4537.2024.299      DOI: 10.11902/1005.4537.2024.299
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
掺氢环境下X80管线钢气相氢损伤研究
刘天乐1,2, 韦博鑫3, 付安庆1, 苏航1(), 陈廷枢1, 王超明1, 王邃1
1.中国石油集团工程材料研究院有限公司 油气钻采输送装备全国重点实验室 西安 710077
2.陕西九州石油工程技术服务有限公司 西安 710077
3.中国科学院金属研究所 沈阳 110016
Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere
LIU Tianle1,2, WEI Boxin3, FU Anqing1, SU Hang1(), CHEN Tingshu1, WANG Chaoming1, WANG Sui1
1.State Key Laboratory of Oil and Gas Equipment, Tubular Goods Research Institute of CNPC, Xi'an 710077, China
2.Shaanxi Jiuzhou Petroleum Engineering & Technology Service Co., Ltd., Xi'an 710077, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
Tianle LIU, Boxin WEI, Anqing FU, Hang SU, Tingshu CHEN, Chaoming WANG, Sui WANG. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 423-430.

全文: PDF(12667 KB)   HTML
摘要: 

以X80管线钢为研究对象,开展气相氢原位慢速率拉伸实验、气相氢渗透实验和氢含量测试,考察了在温度为298 K时不同掺氢比对X80钢力学行为、氢渗透行为和氢含量的影响,以及在掺氢比为10%条件下温度对气相氢渗透动力学参数的影响。随着掺氢比的增加,X80管线钢的屈服强度和抗拉强度均略微下降,断后延伸率逐渐降低、氢脆敏感指数增大、氢含量增大、氢渗透系数和扩散系数增大。在掺氢比为10%条件下随着温度的上升,氢渗透系数和扩散系数均增大,当温度在298 K至373 K范围内时,X80管线钢的氢扩散激活能和渗透激活能分别为1.56和11.25 kJ/mol。

关键词 X80管线钢氢脆掺氢气相氢渗透    
Abstract

With the rapid development of hydrogen energy industry and the urgent need for safe storage and transportation of hydrogen, it has become a major trend to utilize the existing long-distance natural gas pipelines for hydrogen transportation. However, blending hydrogen into natural gas pipelines can adversely impact pipeline steel, posing new problems and challenges for the safe transportation. Herein, the mechanical behavior of X80 pipeline steel in atmospheres of hydrogen blended methane was assessed via in-situ slow-rate tensile test, gas-phase hydrogen permeation test and hydrogen content measurements. The main concern lies in that the effect of different hydrogen-blending ratios on the mechanical properties, hydrogen permeation behavior and the hydrogen content of X80 steel at a temperature of 298 K, along with the impact of temperature on the kinetic parameters of gas-phase hydrogen permeation by the hydrogen-blending ratio of 10%. Results indicated that as the hydrogen-blending ratio increases, the yield and tensile strength of X80 pipeline steel decreased slightly, while the elongation at break decreased gradually, and both the hydrogen embrittlement sensitivity index and the hydrogen permeability coefficient and diffusion coefficient increased. The hydrogen permeability and diffusion coefficients increase with the increase of temperature under the condition of 10% hydrogen doping ratio. At temperatures between 298 K and 373 K, the hydrogen diffusion activation energy and permeation activation energy of X80 pipeline steel were 1.56 and 11.25 kJ/mol, respectively.

Key wordsX80 pipeline steel    hydrogen embrittlement    hydrogen doping    gas phase hydrogen permeation
收稿日期: 2024-09-13      32134.14.1005.4537.2024.299
ZTFLH:  TE832  
基金资助:国家自然科学基金(52071338);国家自然科学基金(52101113);陕西省杰出青年科学基金(2022JC-34);中国石油集团科技开发项目(2022-DQ0527);中国石油天然气集团公司基础研究和战略储备技术研究基金项目(2023DQ03-04)
通讯作者: 苏航,E-mail:Suhang12@cnpc.com.cn,研究方向为氢能储运设施材料开发及应用
Corresponding author: SU Hang, E-mail: Suhang12@cnpc.com.cn
作者简介: 刘天乐,男,1996年生,硕士,工程师
图1  X80钢的金相组织图
图2  拉伸试样尺寸图
图3  X80管线钢的应力-应变曲线
Hydrogen blending ratio %Yield strength MPaTensile strength MPaPercentage elongation %

Hydrogen embrittlement sensitivity index

%

0614.5740.323.33-
10608.2720.622.224.76
30592.8705.821.597.46
50590.2687.618.0522.6
表1  X80管线钢在不同掺氢比环境下的力学参数
图4  X80管线钢拉伸断口微观形貌
图5  不同掺氢比条件下X80管线钢的气相氢渗透曲线
Hydrogen blending ratio / %P / MPaD / m2·s-1Φ / mol·m-1·s-1·MPa-0.5
100.6251.19 × 10-106.43 × 10-11
301.8631.21 × 10-101.17 × 10-10
503.0061.21 × 10-101.99 × 10-10
表2  不同掺氢比条件下X80管线钢气相氢渗透动力学参数
图6  不同温度条件下X80管线钢在气相氢渗透曲线
T / KP / MPaD / m2·s-1Φ / mol·m-1·s-1·MPa-0.5ΔHD / kJ·mol-1ΔHP / kJ·mol-1
2980.6251.19 × 10-106.43 × 10-111.5611.25
3230.6211.23 × 10-108.82 × 10-11
3480.6181.31 × 10-101.12 × 10-10
3730.6251.38 × 10-101.59 × 10-10
表3  不同温度条件下X80管线钢的气相氢渗透动力学参数
图7  X80管线钢的氢含量测试结果
1 Liu C W, Pei Y B, Han H, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies [J]. Oil Gas Storage Transp., 2022, 41: 498
1 刘翠伟, 裴业斌, 韩 辉 等. 氢能产业链及储运技术研究现状与发展趋势 [J]. 油气储运, 2022, 41: 498
2 Li J F, Su Y, Zhang H, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Nat. Gas Ind., 2021, 41(4): 137
2 李敬法, 苏 越, 张 衡 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(4): 137
3 National Energy Administration. Hydrogen energy industry development medium and long-term plan (2021-2035) [EB/OL].
3 国家能源局. 氢能产业发展中长期规划(2021-2035年) [EB/OL].
4 Cao Q, Wang H J, Qin Y M, et al. Current status and analysis of the development of pure hydrogen pipeline hydrogen transmission technology [J]. Mech. Eng., 2024, 46: 18
4 曹 权, 王洪建, 秦业美 等. 纯氢管道输氢技术发展现状与分析 [J]. 力学与实践, 2024, 46: 18
5 Li F, Dong S H, Chen L, et al. Key safety technologies and advances in long-distance pipeline transportation of hydrogen blended natural gas [J]. Mech. Eng., 2023, 45: 230
5 李 凤, 董绍华, 陈 林 等. 掺氢天然气长距离管道输送安全关键技术与进展 [J]. 力学与实践, 2023, 45: 230
6 Sun Y H, Cheng Y F. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions [J]. Int. J. Hydrog. Energy, 2021, 46: 34469
7 Li X, Wei B X, Lu Y H, et al. Research progress on hydrogen damage mechanism of pipeline steel in contact with hydrogen environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1125
7 李 鑫, 韦博鑫, 鲁仰辉 等. 临氢环境下管线钢氢损伤机理研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1125
8 Shang J, Lu Y H, Zheng J Y, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures [J]. Chem. Ind. Eng. Prog., 2021, 40: 5499
8 尚 娟, 鲁仰辉, 郑津洋 等. 掺氢天然气管道输送研究进展和挑战 [J]. 化工进展, 2021, 40: 5499
9 Golisch G, Genchev G, Wanzenberg E, et al. Application of line pipe and hot induction bends in hydrogen gas [J]. J. Pip. Sci. Eng., 2022, 2: 100067
10 Carneiro A R, Ratnapuli C R, de Freitas Cunha Lins V. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking [J]. Mater. Sci. Eng., 2003, 357A: 104
11 Cheng Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil Gas Storage Transp., 2023, 42: 1
11 程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42: 1
12 Gao R Z, Xing B H, Yang C, et al. Synergic effects of temperature and pressure on the hydrogen diffusion and dissolution behaviour of X80 pipeline steel [J]. Corros. Sci., 2024, 240: 112468
13 Wu X, Teng M J, Jia W L, et al. Study on the mechanical properties of X80 pipeline steel under pre-charged high-pressure gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2024, 84: 39
14 Shang J, Guo J X, Hua Z L, et al. Effects of plastic deformation on hydrogen trapping and hydrogen distribution in X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2024. DOI: 10.1016/j.ijhydene.2023.12.272
15 Jiang Q M, Wang Q, Xie P, et al. Development status and analysis of long-distance hydrogen pipeline at home and abroad [J]. Oil-Gas Field Surf. Eng., 2019, 38(12): 6
15 蒋庆梅, 王 琴, 谢 萍 等. 国内外氢气长输管道发展现状及分析 [J]. 油气田地面工程, 2019, 38(12): 6
16 CommissionEuropean. A hydrogen strategy for a climate-neutral Europe: COM(2020)301 [R]. Brussel: European Union, 2020
17 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
17 姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
18 Liu F, Yang H W, Deng F J. Research on hydrogen embrittlement behavior of X52 pipeline steel for hydrogen doped natural gas transportation [J]. Petrol. New Energy, 2024, 36(3): 30
18 刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X52管线钢的氢脆行为研究 [J]. 油气与新能源, 2024, 36(3): 30
19 Xu X S, Zhang R, Wang C L, et al. Experimental study on the temperature dependence of gaseous hydrogen permeation and hydrogen embrittlement susceptibility of X52 pipeline steel [J]. Eng. Fail. Anal., 2024, 155: 107746
20 Wei H T, Duan B Q, Shi X S, et al. Influence of hydrogen in natural gas mixed hydrogen environment on mechanical properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2024, 54: 908
21 Guo S W, Wu H Z, Dong S H, et al. Simulation of hydrogen distribution in pipeline with double corrosion defects [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 335
21 郭诗雯, 吴浩志, 董绍华 等. 含双腐蚀缺陷管道的氢浓度分布模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 335
doi: 10.11902/1005.4537.2023.333
22 Elaoud S, Abdulhay B, Hadj-Taieb E. Effect of hydrogen injection into natural gas on the mechanical strength of natural gas pipelines during transportation [J]. Arch. Mech., 2014, 66: 269
23 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
23 周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
24 Meng B, Gu C H, Zhang L, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures [J]. Int. J. Hydrog. Energy, 2017, 42(11): 7404
25 Xiong L Y, Liu S, Wang L B, et al. Microstructures and hydrogen permeation characteristics of Nb-Ti-Ni alloys [J]. Acta Metall. Sin., 2008, 44: 781
25 熊良银, 刘 实, 王隆保 等. Nb-Ti-Ni合金的显微组织与氢渗透性能 [J]. 金属学报, 2008, 44: 781
26 Liu C W, Yang H C, Wang C L, et al. Effects of CH4 and CO on hydrogen embrittlement susceptibility of X80 pipeline steel in hydrogen blended natural gas [J]. Int. J. Hydrog. Energy, 2023, 48: 27766
27 Xu Z Y, Zhang P Y, Meng G Z. Review of studies on metal hydrogen permeation [J]. Surf. Technol., 2019, 48(11): 45
27 徐政一, 张鹏远, 孟国哲. 金属氢渗透研究综述 [J]. 表面技术, 2019, 48(11): 45
28 Liu W C, Wei B X, Yin H, et al. Finite element analysis of hydrogen permeation in X80 pipeline with corrosion defects under axial strain [J]. Surf. Technol., 2024, 53(8): 84
28 刘韦辰, 韦博鑫, 尹 航 等. 轴向应变作用下含腐蚀缺陷X80管道氢渗透的有限元分析 [J]. 表面技术, 2024, 53(8): 84
29 Castaño Rivera P, Ramunni V P, Bruzzoni P. Hydrogen trapping in an API 5L X60 steel [J]. Corros. Sci., 2012, 54: 106
30 Wang H, Zhao H M, Chen H, et al. Effect of hydrogen traps on the determination of hydrogen diffusion coefficients in hydrogen-sensitive steels [J]. Trans. Mater. Heat Treat., 2016, 37(4): 236
30 王 洪, 赵和明, 陈 辉 等. 氢陷阱对临氢钢氢扩散系数测定的影响 [J]. 材料热处理学报, 2016, 37(4): 236
31 He P F, Zhao S W, Li W X. Research progress on fatigue damage of pre-charged hydrogen metals [J]. J. Tongji Univ. (Nat. Sci.), 2024, 52: 1118
31 贺鹏飞, 赵晟炜, 李文晓. 预充氢金属疲劳损伤研究进展 [J]. 同济大学学报(自然科学版), 2024, 52: 1118
[1] 王慧玲, 明洪亮, 王俭秋, 韩恩厚. 掺氢天然气管线钢氢渗透行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] 白云龙, 冷冰, 韦博鑫, 董立谨, 于长坤, 许进, 孙成. 掺氢天然气管材及焊缝的氢损伤行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 283-295.
[4] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[5] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[6] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[7] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[8] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[9] 张倩茹, 孙擎擎. 氢促进局部塑性变形理论的发展趋势[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[10] 万红江, 明洪亮, 王俭秋, 韩恩厚. H2O2CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[11] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[12] 樊嘉骏, 董立谨, 马成, 张兹瑜, 明洪亮, 韦博鑫, 彭庆, 王勤英. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[13] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[14] 李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[15] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.