Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 103-114     CSTR: 32134.14.1005.4537.2024.153      DOI: 10.11902/1005.4537.2024.153
  研究报告 本期目录 | 过刊浏览 |
静水压力对Cr/GLC叠层涂层腐蚀行为的影响
马宏宇1,2, 刘叡1, 崔宇2(), 柯培玲3, 刘莉1, 王福会1
1 东北大学腐蚀与防护中心 沈阳 110819
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 中国科学院宁波材料技术与工程研究所公共技术中心 宁波 315201
Effect of Hydrostatic Pressure on Corrosion Behavior of Cr/GLC Laminated Coating
MA Hongyu1,2, LIU Rui1, CUI Yu2(), KE Peiling3, LIU Li1, WANG Fuhui1
1 Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Public Technology Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
Hongyu MA, Rui LIU, Yu CUI, Peiling KE, Li LIU, Fuhui WANG. Effect of Hydrostatic Pressure on Corrosion Behavior of Cr/GLC Laminated Coating[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 103-114.

全文: PDF(16109 KB)   HTML
摘要: 

以Cr/GLC叠层涂层为研究对象,通过原位电化学测试、扫描电子显微镜(SEM)和二次离子质谱(SIMS)等方法研究了3.5%NaCl溶液中0.1 MPa和15 MPa静水压力下涂层的腐蚀行为。结果表明,高静水压力加速了Cr/GLC叠层涂层腐蚀失效。静水压力显著增加Cr/GLC叠层涂层的腐蚀电流密度,促进涂层表面和涂层/金属基体界面Cl-吸附,降低涂层/金属基体界面结合力。

关键词 Cr/GLC叠层涂层静水压力电化学测试腐蚀    
Abstract

The corrosion behavior of laminated coating chromium/graphite-like amorphous carbon (Cr/GLC) on 431 stainless steel in 3.5%NaCl solution by applied hydrostatic pressures ranging 0.1 MPa to 15 MPa was investigated by in-situ electrochemical measurements, scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). The results showed that high hydrostatic pressure may accelerate the corrosion failure of laminated coating Cr/GLC. Hydrostatic pressure significantly increases the corrosion current density of laminated coating Cr/GLC, promotes Cl- adsorption on the coating surface and inward to the coating/metal substrate interface, thereby decreases the interface bonding strength of coating/metal substrate.

Key wordsCr/GLC laminated coating    hydrostatic pressure    electrochemical measurement    corrosion
收稿日期: 2024-05-16      32134.14.1005.4537.2024.153
ZTFLH:  TG174  
基金资助:中国科学院A类战略性先导科技专项(XDA22010303)
通讯作者: 崔宇,E-mail:ycui@imr.ac.cn,研究方向为深海金属腐蚀防护
Corresponding author: CUI Yu, E-mail: ycui@imr.ac.cn
作者简介: 马宏宇,男,1996年生,博士生
图1  模拟深海环境系统[30]
图2  Cr/GLC叠层涂层的表面、截面形貌,生长缺陷和EDS结果
图3  0.1 MPa和 15 MPa压力下服役不同时间后Cr/GLC叠层涂层表面腐蚀形貌
图4  0.1 MPa和15 MPa服役不同时间后Cr/GLC叠层涂层的截面腐蚀形貌
图5  Cr/GLC叠层涂层在0.1 MPa和15 MPa压力下浸泡不同时间后的Bode图
Time / hRs / Ω·cm2Rf / Ω·cm2nfQf / F·cm-2Rdl / Ω·cm2ndlQdl / F·cm-2
0.514.175.32 × 1050.934.36 × 10-64.59 × 1060.929.28 × 10-7
413.975.52 × 1050.944.46 × 10-64.86 × 1060.919.38 × 10-7
813.637.37 × 1050.944.03 × 10-67.67 × 1060.929.54 × 10-7
1214.159.55 × 1050.944.08 × 10-61.05 × 1070.898.52 × 10-7
2414.731.18 × 1060.944.04 × 10-61.09 × 1070.906.71 × 10-7
3614.81.06 × 1060.954.27 × 10-66.51 × 1060.887.09 × 10-7
4812.568.64 × 1050.954.16 × 10-68.66 × 1060.866.73 × 10-7
7211.688.72 × 1050.954.25 × 10-69.13 × 1060.883.21 × 10-7
12010.497.99 × 1050.944.29 × 10-67.96 × 1060.786.42 × 10-7
15611.116.19 × 1050.924.55 × 10-66.37 × 1060.821.09 × 10-6
22813.315.46 × 1050.925.12 × 10-64.83 × 1060.811.19 × 10-6
27612.723.41 × 1050.925.60 × 10-61.22 × 1060.781.33 × 10-6
34810.925.51 × 1050.934.95 × 10-65.83 × 1060.846.98 × 10-7
48013.582.61 × 1050.925.60 × 10-61.08 × 1060.781.10 × 10-6
57612.25.37 × 1050.925.35 × 10-62.47 × 1060.731.04 × 10-6
61212.41.71 × 1050.925.75 × 10-61.01 × 1060.805.56 × 10-7
64813.311.38 × 1050.925.75 × 10-63.93 × 1050.731.09 × 10-6
72012.521.14 × 1050.915.82 × 10-63.60 × 1050.821.09 × 10-6
表1  0.1 MPa压力下Cr/GLC叠层涂层在3.5%NaCl溶液中浸泡不同时间的EIS拟合结果
Time / hRs / Ω·cm2Rf / Ω·cm2nfQf / F·cm-2Rdl / Ω·cm2ndlQdl / F·cm-2
29.485.29 × 1040.932.04×10-51.63 × 1050.838.29 × 10-6
69.405.21 × 1040.922.20×10-51.59 × 1050.778.09 × 10-6
810.495.35 × 1040.931.32×10-51.81 × 1050.783.84 × 10-6
109.415.28 × 1040.922.18×10-51.62 × 1050.811.28 × 10-5
248.504.54 × 1040.901.72×10-59.01 × 1040.752.81 × 10-5
309.425.00 × 1040.922.25×10-51.46 × 1050.812.58 × 10-5
489.344.07 × 1040.902.44×10-55.48 × 1040.788.09 × 10-6
969.273.94 × 1040.902.81×10-54.71 × 1040.793.36 × 10-5
1209.234.02 × 1040.892.95×10-55.42 × 1040.844.93 × 10-5
1329.078.85 × 1030.836.88×10-56.65 × 1040.931.49 × 10-4
1688.976.93 × 1020.781.65×10-48.47 × 1030.723.08 × 10-4
2408.986.11 × 1020.761.99×10-47.68 × 1030.732.93 × 10-4
3609.195.00 × 1020.772.02×10-45.58 × 1030.723.15 × 10-4
表2  15 MPa压力下Cr/GLC叠层涂层在3.5%NaCl溶液中浸泡不同时间的EIS拟合结果
图6  0.1 MPa和15 MPa下Cr/GLC叠层涂层和431不锈钢恒电位极化测试结果
图7  0.1和15 MPa压力下浸泡720 h后的Cr/GLC叠层涂层中元素沿深度分布
图8  0.1和15 MPa压力下Cr/GLC叠层涂层内Cr0.1 MPa/Cr15 MPa的峰强度比值
图9  431不锈钢基体上Cr/GLC叠层涂层在0.1 MPa压力下浸泡不同时间后的划痕形貌与摩擦力曲线
图10  431不锈钢基体上Cr/GLC叠层涂层在15 MPa压力下浸泡不同时间后划痕形貌与摩擦力曲线
图11  0.1 MPa和15 MPa压力下浸泡不同时间后Cr/GLC叠层涂层/431不锈钢基体体系界面结合力变化
图12  Cr/GLC叠层涂层的腐蚀失效机制示意图
1 Li L, Liu L L, Li X W, et al. Enhanced tribocorrosion performance of Cr/GLC multilayered films for marine protective application [J]. ACS Appl. Mater. Interfaces, 2018, 10: 13187
2 Al Mahmud K A H, Kalam M A, Masjuki H H, et al. An updated overview of diamond-like carbon coating in tribology [J]. Crit. Rev. Solid State Mater. Sci., 2015, 40: 90
3 Ye Y W, Wang C T, Wang Y X, et al. A novel strategy to enhance the tribological properties of Cr/GLC films in seawater by surface texturing [J]. Surf. Coat. Technol., 2015, 280: 338
4 Sharma R, Barhai P K, Kumari N. Corrosion resistant behaviour of DLC films [J]. Thin Solid Films, 2008, 516: 5397
5 Bewilogua K, Hofmann D. History of diamond-like carbon films-from first experiments to worldwide applications [J]. Surf. Coat. Technol., 2014, 242: 214
6 Ma H Y, Liu R, Ke P L, et al. Effect of hydrostatic pressure on the pitting corrosion of 17-4PH martensitic stainless steel [J]. Eng. Failure Anal., 2022, 138: 106367
7 Liu R, Liu L, Wang F H. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments-a review [J]. J. Mater. Sci. Technol., 2022, 112: 230
8 Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
9 Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
10 Hu S B, Liu L, Cui Y, et al. Influence of hydrostatic pressure on the corrosion behavior of 90/10 copper-nickel alloy tube under alternating dry and wet condition [J]. Corros. Sci., 2019, 146: 202
11 Meng F D, Gao H D, Liu L, et al. Preparation and anticorrosive performance of a basalt organic coating for deep sea coupled pressure-fluid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 704
11 孟凡帝, 高浩东, 刘 莉 等. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 704
doi: 10.11902/1005.4537.2023.142
12 Wu W W, Li X Y, Dong H S, et al. Deposition and microstructural characterisation of GLC coatings on AZ31 magnesium alloy [J]. Plasma Process. Polym., 2009, 6: 473
13 Wang Z P, Chen P B, Ma Z W, et al. Effects of rare earth on electrochemical corrosion behavior of graphite-like carbon coatings [J]. Adv. Mater. Res., 2011, 199/200: 1978
14 Zhang J W, Zhou S G, Wang Y X, et al. Enhancing anti-corrosion and antifouling properties of Cu/GLC composite film for marine application [J]. Surf. Coat. Technol., 2019, 375: 414
15 Dos Santos A M M, Batista R J C, Martins L A M, et al. Corrosion and cell viability studies of graphite-like hydrogenated amorphous carbon films deposited on bare and nitrided titanium alloy [J]. Corros. Sci., 2014, 82: 297
16 Guan X Y, Wang Y X, Wang J F, et al. Adaptive capacities of chromium doped graphite-like carbon films in aggressive solutions with variable pH [J]. Tribol. Int., 2016, 96: 307
17 Gong Z B, Jia X L, Ma W, et al. Hierarchical structure graphitic-like/MoS2 film as superlubricity material [J]. Appl. Surf. Sci., 2017, 413: 381
18 Bai W Q, Xie Y J, Li L L, et al. Tribological and corrosion behaviors of Zr-doped graphite-like carbon nanostructured coatings on Ti6Al4V alloy [J]. Surf. Coat. Technol., 2017, 320: 235
19 Zhang Y H, Ma J, Jiang B L. Influence of Cr content on hardness and valence bond structure of graphite-like carbon coatings [J]. T. Mater. Heat. Treat., 2007, 28(4): 106
19 张永宏, 马 婕, 蒋百灵. Cr含量对类石墨碳涂层硬度及其价键结构的影响 [J]. 材料热处理学报, 2007, 28(4): 106
20 Loubière S, Laurent C, Bonino J P, et al. Elaboration, microstructure and reactivity of Cr3C2 powders of different morphology [J]. Mater. Res. Bull., 1995, 30: 1535
21 Li L, Guo P, Liu L L, et al. Metal buffer layer on structure, mechanical and tribological property of GLC films [J]. J. Inorg. Mater., 2018, 33: 331
doi: 10.15541/jim20170217
21 李 蕾, 郭 鹏, 刘林林 等. 金属过渡层类型对非晶碳膜结构性能的影响 [J]. 无机材料学报, 2018, 33: 331
22 Li L, Guo P, Liu L L, et al. Structural design of Cr/GLC films for high tribological performance in artificial seawater: Cr/GLC ratio and multilayer structure [J]. J. Mater. Sci. Technol., 2018, 34: 1273
doi: 10.1016/j.jmst.2017.12.002
23 Liu Y R, Du H, Zuo X, et al. Cr/GLC multilayered coating in simulated deep-sea environment: corrosion behavior and growth defect evolution [J]. Corros. Sci., 2021, 188: 109528
24 Liu Y R, Li S Y, Li H, et al. Controllable defect engineering to enhance the corrosion resistance of Cr/GLC multilayered coating for deep-sea applications [J]. Corros. Sci., 2022, 199: 110175
25 Li S Y, Li H, Ma G S, et al. Dense Cr/GLC multilayer coating by HiPIMS technique in high hydrostatic pressure: microstrusctural evolution and galvanic corrosion failure [J]. Corros. Sci., 2023, 225: 111618
26 Li S Y, Li H, Zhang Y, et al. Dense Al2O3 sealing inhibited high hydrostatic pressure corrosion of Cr/GLC coating [J]. npj Mater. Degrad., 2024, 8: 48
27 Liu Y R, Li S Y, Zhou X H, et al. Enhanced anti-tribocorrosion property of a-C film under high hydrostatic pressure by high power pulsed magnetron sputter (HiPIMS) [J]. J. Mater. Res. Technol., 2024, 28: 3052
28 Ma H Y, Liu R, Cui Y, et al. The effect law of different hydrostatic pressures on the failure of multilayer Cr/GLC coatings in 3.5wt% NaCl solution [J]. Corros. Sci., 2023, 217: 111120
29 Ma H Y, Qin P F, Cui Y, et al. Prediction of multilayer Cr/GLC coatings degradation in deep-sea environments based on integrated mechanistic and machine learning models [J]. Corros. Sci., 2023, 224: 111513
30 Song Y S, Liu R, Cui Y, et al. Stress corrosion behavior of Ni-Cr-Mo-V steel in 3.5%NaCl solution under the interaction of tensile stress and hydrostatic pressure [J/OL]. Acta Metall. Sin.
30 宋昱杉, 刘 叡, 崔 宇 等. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为 [J/OL]. 金属学报.
31 Liu R, Cui Y, Liu L, et al. Study on the mechanism of hydrostatic pressure promoting electrochemical corrosion of pure iron in 3.5% NaCl solution [J]. Acta Mater., 2021, 203: 116467
32 Xiong X L, Ban X J, Yan Y, et al. Hydrostatic pressure effect on double layer capacity of iron [J]. J. Electroanal. Chem., 2020, 871: 114306
33 Ma H Y, Yang N, Cui Y, et al. Investigation of the passive film of nanocrystalline 304 stainless steel in 3.5wt%NaCl solution under hydrostatic pressure [J]. Electrochim. Acta, 2024, 481: 143981
34 Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
34 耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
35 Hu Q, Gao J Y, Shu S, et al. Corrosion behaviors of multilayer C/Cr/SS bipolar plates for proton exchange membrane fuel cells under dynamic potential polarization based on new european driving cycle [J]. Corros. Sci., 2023, 214: 111032
36 Wei J, Li H C, Liu L L, et al. Enhanced tribological and corrosion properties of multilayer ta-C films via alternating sp3 content [J]. Surf. Coat. Technol., 2019, 374: 317
37 Fu Y Q, Zhou F, Wang Q Z, et al. Electrochemical and tribocorrosion performances of CrMoSiCN coating on Ti-6Al-4V titanium alloy in artificial seawater [J]. Corros. Sci., 2020, 165: 108385
38 Ahn S H, Lee J H, Kim J G, et al. Localized corrosion mechanisms of the multilayered coatings related to growth defects [J]. Surf. Coat. Technol., 2004, 177/178: 638
[1] 任明泽, 董琳, 杨冠军. 环境障涂层材料及结构优化研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
[2] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[3] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[4] 李晗晔, 张志超, 王群昌, 古岩, 陈泽浩, 杨莎莎, 梅飞强. 钛合金表面碱洗及水洗留痕形成机制与腐蚀过程控制[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[5] 王昆, 邹兰欣, 郭磊, 闫凯, 叶福兴, 刘洪丽, 郭洪波. 航空发动机及燃气轮机热障涂层高温腐蚀与防护[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[6] 王粤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K444合金表面CVD渗铝涂层耐高温95%Na2SO4 + 5%NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[7] 张勇康, 翟海民, 李旭强, 李文生. Fe基非晶涂层在Na2SO4 + K2SO4Na2SO4 +NaCl混合盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[8] 杨啸东, 李雪, 喻政, 杨莎莎, 陈明辉, 王福会. 搪瓷涂层在600 ℃熔融MgCl2-NaCl-KCl中热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 155-163.
[9] 梁玉伟, 王婕, 宋鹏, 黄太红, 包宇旭. FeCrMoSiB非晶涂层的耐磨耐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
[10] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[11] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[12] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[13] 占阜元, 刘宣义, 黄世福, 刘帅岐, 徐媛媛, 潘喜桂, 何华林, 刘光明. SA210C钢在涂覆不同质量比混合盐膜下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[14] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[15] 王承涛, 申冠一, 许少毅, 李威, 王禹桥, 王树臣, 闻东东, 李朋宇. 基于物理场耦合的交流干扰作用下埋地金属管线腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2024, 44(6): 1573-1580.