Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1316-1322     CSTR: 32134.14.1005.4537.2023.376      DOI: 10.11902/1005.4537.2023.376
  研究报告 本期目录 | 过刊浏览 |
海水环境因素对网纹藤壶金星幼虫附着的影响机制
吴进怡1,2, 柴柯1,2(), 李晓琳1, 尚瑾1, 李强1, 吴耀华2
1 潍坊科技学院智能制造学院 山东省农机装备用材料工程高校特色实验室 潍坊 262700
2 广东腐蚀科学与技术创新研究院 广州 510530
Effects of Surrounding Factors on Settlement of Balanus Reticulatus Cyprids in Artificial Seawaters
WU Jinyi1,2, CHAI Ke1,2(), LI Xiaolin1, SHANG Jin1, LI Qiang1, WU Yaohua2
1 University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China
2 Institute of Corrosion Science and Technology, Guangzhou 510530, China
引用本文:

吴进怡, 柴柯, 李晓琳, 尚瑾, 李强, 吴耀华. 海水环境因素对网纹藤壶金星幼虫附着的影响机制[J]. 中国腐蚀与防护学报, 2024, 44(5): 1316-1322.
Jinyi WU, Ke CHAI, Xiaolin LI, Jin SHANG, Qiang LI, Yaohua WU. Effects of Surrounding Factors on Settlement of Balanus Reticulatus Cyprids in Artificial Seawaters[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1316-1322.

全文: PDF(1928 KB)   HTML
摘要: 

网纹藤壶是广泛分布在中国各海域及世界许多海域的大型污损生物。通过藤壶培养及附着观察探索了不同海水环境因素对网纹藤壶金星幼虫在生物相容性极佳的钛合金表面和玻璃表面附着的影响,结果表明pH为8时金星幼虫在TC4钛合金表面的附着率及在TC4钛合金表面和玻璃表面的整体附着率达到最大值,分别为10%和76.7%;盐度为25‰时,整体附着率达最大值73.3%,盐度在(13~18)‰之间,TC4钛合金表面附着率达最大值6.67%;温度和海水流速对网纹藤壶金星幼虫附着的影响也极为显著,当温度为10℃时不附着,当温度为25℃时,整体附着率达50%,TC4钛合金表面附着率达10%;当海水流速为0时,金星幼虫附着率最高,流速达12 m/s时,金星幼虫在钛合金表面和玻璃表面均无法附着。上述环境因素对网纹藤壶金星幼虫附着的影响,可为海洋防污损策略提供依据。

关键词 网纹藤壶金星幼虫环境因素钛合金附着率    
Abstract

Balanus reticulatus is a macrofouling organism that is widespread in the sea areas of China and lots of sea areas in the world. Herein, the effects of surrounding factors on the settlement of Balanus reticulatus cyprids on the TC4 Ti-alloy and the glass which are highly biocompatible were investigated via observations of the settlement of Balanus reticulatus cyprids. The results showed that the settlement ratio on the TC4 Ti-alloy surface and the settlement ratio on the overall surface of TC4 Ti-alloy and glass reached the maxima when pH was 8 for the artificial seawater, which were 10% and 76.7%, respectively. The highest settlement ratio 73.3% on the overall surface of TC4 Ti-alloy and glass was in the seawater of 25‰ salinity, whereas the highest settlement ratio 6.67% on the TC4 Ti-alloy in seawaters of salinity between 13‰ to 18‰. The temperature and the flow velocity of the seawater also influenced the cyprid settlement significantly. At 10oC, the cyprids did not settle. However, the settlement ratio on the TC4 Ti-alloy and the settlement ratio on the overall surface of TC4 Ti-alloy and glass were 10% and 50% at 25oC, respectively. The corresponding two settlement ratios all reached the highest values in the still seawater. The cyprids did not settle when the seawater flow velocity was 12 m/s. These results threw a light on the anti-biofouling for marine facilities.

Key wordsBalanus reticulatus    cyprid    surrounding factor    Ti-alloy    settlement ratio
收稿日期: 2023-11-27      32134.14.1005.4537.2023.376
ZTFLH:  TG174  
基金资助:鸢都学者特聘专家项目(ydxz2023007);潍坊科技学院高层次人才科研启动资金项目(KJRC2023002, KJRC2023024)
通讯作者: 柴柯,E-mail:3169758918@qq.com,研究方向为材料的生物腐蚀与防护
Corresponding author: CHAI Ke, E-mail: 3169758918@qq.com
作者简介: 吴进怡,女,1976年生,博士,教授
柴 柯,男,1972年生,博士,教授
图1  孵化后不同时间的网纹藤壶无节幼虫到金星幼虫的发育及变态情况
图2  不同pH下网纹藤壶金星幼虫在TC4钛合金表面的附着率及在TC4钛合金表面和玻璃表面的整体附着率
图3  不同盐度下网纹藤壶金星幼虫在TC4钛合金表面的附着率及在TC4钛合金表面和玻璃表面的整体附着率
图4  不同温度下网纹藤壶金星幼虫在TC4钛合金表面的附着率及在TC4钛合金表面和玻璃表面的整体附着率
图5  不同海水流速下网纹藤壶金星幼虫在TC4钛合金表面的附着率及在TC4钛合金表面和玻璃表面的整体附着率
Sea area

Seawater

temperature

oC

Total salt

content

Dissolved oxygen

mg·L-1

Chemical

oxygen demand

mg·L-1

pH

Air

temperature

oC

Qingdao14.0932.407.587.628.1812.22
Xiamen21.8327.185.957.728.0320.7
Sanya26.3832.316.448.108.1225.63
表1  青岛、厦门和三亚海域的海水理化参数
1 Thiyagarajan V, Nair K V K, Subramoniam T, et al. Larval settlement behaviour of the barnacle Balanus reticulatus in the laboratory [J]. J. Mar. Biol. Assoc. UK, 2002, 82: 579
2 Berglin M, Gatenholm P. The barnacle adhesive plaque: morphological and chemical differences as a response to substrate properties [J]. Colloid. Surf., 2003, 28B: 107
3 Copisarow M. Marine fouling and its prevention [J]. Science, 1945, 101: 406
pmid: 17758725
4 Dobretsov S, Dahms H U, Qian P Y. Inhibition of biofouling by marine microorganisms and their metabolites [J]. Biofouling, 2006, 22: 43
pmid: 16551560
5 Hellio C, Simon-Colin C, Clare A, et al. Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu, inhibit settlement of Balanus amphitrite cyprid larvae [J]. Biofouling, 2004, 20: 139
6 Lejars M, Margaillan A, Bressy C. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings [J]. Chem. Rev., 2012, 112: 4347
doi: 10.1021/cr200350v pmid: 22578131
7 Ramsay D B, Dickinson G H, Orihuela B, et al. Base plate mechanics of the barnacle Balanus amphitrite (=Amphibalanus amphitrite) [J]. Biofouling, 2008, 24: 109
doi: 10.1080/08927010701882112 pmid: 18247205
8 Yule A B, Walker G. Settlement of Balanus balanoides: the effect of cyprid antennular secretion [J]. J. Mar. Biol. Assoc. UK, 1985, 65: 707
9 Pradhan N N, Gohad N V, Orihuela B, et al. Development of an automated algorithm for tracking and quantifying Barnacle cyprid settlement behavior [J]. J. Exp. Mar. Biol. Ecol., 2011, 410: 21
10 Nasrolahi A, Pansch C, Lenz M, et al. Being young in a changing world: how temperature and salinity changes interactively modify the performance of larval stages of the barnacle Amphibalanus improvisus [J]. Mar. Biol., 2012, 159: 331
11 Olivier F, Tremblay R, Bourget E, et al. Barnacle settlement: field experiments on the influence of larval supply, tidal level, biofilm quality and age on Balanus amphitrite cyprids [J]. Mar. Ecol. Prog. Ser., 2000, 199: 185
12 Matsumurad K, Nagano M, Kato-Yoshinaga Y, et al. Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactions [J]. Proc. Roy. Soc., 1998, 265B: 1825
13 Clare A S, Høeg J T. Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature [J]. Biofouling, 2008, 24: 55
14 Dreanno C, Kirby R R, Clare A S. Smelly feet are not always a bad thing: the relationship between cyprid footprint protein and the barnacle settlement pheromone [J]. Biol. Lett., 2006, 2: 423
15 Lagersson N, Høeg J. Settlement behavior and antennulary biomechanics in cypris larvae of Balanus amphitrite (Crustacea: Thecostraca: Cirripedia) [J]. Mar. Biol., 2002, 141: 513
16 Dineen Jr J F, Hines A H. Effects of salinity and adult extract on settlement of the oligohaline barnacle Balanus subalbidus [J]. Mar. Biol., 1994, 119: 423
17 O’Connor N J, Richardson D L. Comparative attachment of barnacle cyprids (Balanus amphitrite Darwin, 1854; B. improvisus Darwin, 1854; & B. ebumeus Gould, 1841) to polystyrene and glass substrata [J]. J. Exp. Mar. Biol. Ecol., 1994, 183: 213
18 Larsson A I, Jonsson P R. Barnacle larvae actively select flow environments supporting post-settlement growth and survival [J]. Ecology, 2006, 87: 1960
pmid: 16937634
19 Want A, Goubard A, Jonveaux S, et al. Key biofouling organisms in tidal habitats targeted by the offshore renewable energy sector in the North Atlantic include the massive barnacle Chirona hameri [J]. J. Mar. Sci. Eng., 2023, 11: 2168
20 Dolezal M M, Foroughirad V, Fish F E, et al. Some like it hot: temperature and hydrodynamic factors influence Xenobalanus globicipitis attachment to cetaceans [J]. Mar. Mamm. Sci., 2023, 39: 961
21 Hesketh A V, Harley C D G. Extreme heatwave drives topography-dependent patterns of mortality in a bed-forming intertidal barnacle, with implications for associated community structure [J]. Global Change Biol., 2023, 29: 165
22 Rech S, Hunsucker K Z, Weaver R J. Modeling benthic community settlement and recruitment on living dock restoration mats [J]. Environments, 2023, 10: 138
23 Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 111
23 李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 111
doi: 10.11902/1005.4537.2022.028
24 Zheng Z, Zhou Y X, Li Y Y. AC corrosion behavior of several metallic materials as candidate for boiler electrode [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 202
24 郑 重, 周远翔, 李永印. 锅炉电极材料交流腐蚀特性与选型研究 [J]. 中国腐蚀与防护学报, 2023, 43: 202
25 Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
25 柳皓晨, 范 林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175
doi: 10.11902/1005.4537.2021.050
26 Rittschof D, Clare A S, Gerhart D J, et al. Barnacle in vitro assays for biologically active substances: toxicity and Settlement inhibition assays using mass cultured Balanus amphitrite amphitrite Darwin [J]. Biofouling, 1992, 6: 115
27 Allan G L, Maguire G B. Effects of pH and salinity on survival, growth and osmoregulation in Penaeus monodon Fabricius [J]. Aquaculture, 1992, 107: 33
28 Satuito C G, Shimizu K, Natoyama K, et al. Age-related settlement success by cyprids of the barnacle Balanus amphitrite, with special reference to consumption of cyprid storage protein [J]. Mar. Biol., 1996, 127: 125
29 Phang I Y, Aldred N, Clare A S, et al. An in situ study of the nanomechanical properties of barnacle (Balanus amphitrite) cyprid cement using atomic force microscopy (AFM) [J]. Biofouling, 2006, 22: 245
pmid: 17290868
30 Chai K, Wu Y H, Shi W, et al. The movement and settlement behaviour of cyprids of Balanus reticulatus on the surfaces of the titanium alloys [J]. Biofouling, 2022, 38: 824
31 Mullineaux L S, Butman C A. Initial contact, exploration and attachment of barnacle (Balanus amphitrite) cyprids settling in flow [J]. Mar. Biol., 1991, 110: 93
[1] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[2] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[3] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[4] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[5] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[6] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[7] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[10] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] 付颖, 张艳, 包星宇, 张伟, 王福会, 辛丽. 钛合金表面耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123.
[12] 郭宝会, 邱友绪, 李海龙. 人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
[13] 赵阳, 梁平, 史艳华, 张云霞. 环境因素对X100钢表面钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[14] 王海杰, 王佳, 彭欣, 山川. 钛合金在3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 75-80.
[15] 朱娟, 张乔斌, 陈宇, 张昭, 张鉴清, 曹楚南. 冲刷腐蚀的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(3): 199-210.