Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (1): 75-80    DOI: 10.11902/1005.4537.2013.230
  本期目录 | 过刊浏览 |
钛合金在3.5%NaCl溶液中的腐蚀行为
王海杰1, 王佳1,3(), 彭欣2, 山川1
1. 中国海洋大学化学化工学院 青岛 266100
2. 浙江大学舟山海洋研究中心 舟山 316000
3. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110015
Corrosion Behavior of Three Titanium Alloys in 3.5%NaCl Solution
WANG Haijie1, WANG Jia1,3(), PENG Xin2, SHAN Chuan1
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2849 KB)   HTML
摘要: 

利用循环伏安法 (CV) 和楔型加载WOL预裂纹试样法,结合扫描电镜 (SEM) 研究了TC4,TC18和TC21 3种钛合金在3.5%NaCl溶液中的腐蚀行为。结果表明:3种钛合金的点蚀击破电位Eb分别是1.625,1.671和1.871 V,均较高,耐点蚀性能均较优异,点蚀敏感性依次为:TC4>TC18>TC21。3种钛合金的应力腐蚀临界应力场强度因子KISCC分别为62.92,66.82和71.99 MPam0.5,应力腐蚀敏感性依次为:TC4>TC18>TC21。从3种钛合金应力腐蚀宏观形貌可明显观察到预制裂纹区、腐蚀开裂区和机械断裂区的三层结构。其中,应力腐蚀开裂区以韧性断裂为主。

关键词 钛合金应力腐蚀点蚀应力场强度因子循环伏安法    
Abstract

Corrosion behavior of three titanium alloys (TC4, TC18, TC21) in 3.5%NaCl solution was studied by means of cyclic voltammetry, SCC test with WOL pre-cracked sample and scanning electron microscope. Results showed that the pitting corrosion potential Eb of the three titanium alloys were 1.625, 1.671 and 1.871 V for TC4, TC18 and TC21, respectively. All values of Eb were high, representing the excellent pitting corrosion resistance of them. The pitting corrosion susceptibility of them could be ranked as the following descending sequence: TC4>TC18>TC21. The KISCC for TC4, TC18 and TC21 were 62.92, 66.82 and 71.99 MPam0.5 respectively and the SCC susceptibility of the three titanium alloys followed a sequence as: TC4>TC18>TC21. On the fractured surface of the alloys after SCC test, a macro-morphology with three zones representing pre-crack, stress corrosion induced crack and mechanical fracture respectively were clearly differentiated, while the stress corrosion cracking zone showed mainly ductile fracture.

Key wordstitanium alloy    stress corrosion    pitting corrosion    stress field intensity factor    cyclic voltammetry
    
ZTFLH:  O646  
作者简介: null

王海杰,男,1985年生,博士生

引用本文:

王海杰, 王佳, 彭欣, 山川. 钛合金在3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 75-80.
Haijie WANG, Jia WANG, Xin PENG, Chuan SHAN. Corrosion Behavior of Three Titanium Alloys in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 75-80.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.230      或      https://www.jcscp.org/CN/Y2015/V35/I1/75

Sample Al V Fe Mo Cr Zr Nb Sn Ti
TC4 5.5~6.8 3.5~4.5 0.3 --- --- --- --- --- Bal.
TC18 4.4~5.7 4.0~5.5 0.5~1.5 4.0~5.5 0.5~1.5 ≤0.30 --- --- Bal.
TC21 5.2~6.8 --- 0.9~2.0 2.2~3.3 0.9~2.0 1.6~2.5 1.7~2.3 1.6~2.5 Bal.
表1  3种钛合金的化学成分
图1  钛合金应力腐蚀试样图
图2  3种钛合金的阳极循环伏安曲线
Sample Eb / V Ep / V Eb-Ep / V
TC4 1.625 1.474 0.157
TC18 1.671 1.442 0.229
TC21 1.842 1.694 0.148
表2  钛合金在3.5%NaCl溶液中的点蚀参数
图3  3种钛合金裂纹尖端和基体钝化区的电位变化图
图4  3种钛合金的裂纹长度和生长速率随时间的变化曲线
图5  3种钛合金裂缝长度a与应力场强度因子KI的变化曲线
图6  3种钛合金裂纹扩展速率da/dt的lg值与KI的关系图
图7  钛合金断裂区的宏观形貌
图8  3种钛合金的预制裂纹区, 应力腐蚀开裂区和机械开裂区的SEM像
[1] Yang D, Guo J M. Corrosion mechanism of titanium alloys and development of corrosion-resistance titanium alloys[J]. Titanium Ind. Prog., 2011, 28(2): 4
[1] (杨东, 郭金明. 钛合金的腐蚀机理及耐蚀钛合金的发展现状[J]. 钛工业进展, 2011, 28(2): 4)
[2] Tian F, Yang X H. Application of titanium alloys in ship building[J]. Chin. J. Ship Res., 2009, 4(03): 77
[2] (田非, 杨雄辉. 舰艇用钛合金技术应用分析[J]. 中国舰船研究, 2009, 4(3): 77)
[3] Li L, Sun J K, Meng X J, et al. Application state and prospects for titanium alloys[J]. Titanium Ind. Prog., 2004, 21(5): 19
[3] (李梁, 孙健科, 孟祥军等. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2004, 21(5): 19)
[4] Jiang C Y, Xu J J, Yan K, et al. Titanium application for navy in Russia and our suggestions[J]. Titanium Ind. Prog., 2003, 20(6): 32
[4] (蒋成禹, 徐济进, 严铿等. 俄罗斯海军用钛情况及我们的思考[J]. 钛工业进展, 2003, 20(6): 32)
[5] Huang H. Titanium is preferred material for heat exchangers in desalination equipment[J]. Rare Met. Lett., 1999, (9): 5
[5] (黄虹. 钛是海水淡化设备换热器的首选材料[J]. 稀有金属快报, 1999, (9): 5)
[6] Meng X J, Wang D. Development of titanium alloys for shipbuilding[J]. Titanium Ind. Prog., 2000, 17(5): 7
[6] (孟祥军, 汪汀. 船用钛合金发展概况[J]. 钛工业进展, 2000, 17(5): 7)
[7] Leyens C,Peters M,translated by Chen Z H. Titanium and Titanium Alloys[M]. Beijing: Chemical Industry Press, 2005: 11
[7] (Leyens C,Peters M著,陈振华译. 钛与钛合金[M]. 北京: 化学工业出版社, 2005: 11)
[8] Liu G L. Study of stress corrosion mechanism of Ti alloys by recursion method[J]. Acta Metall. Sin., 2007, 43(3): 249
[8] (刘贵立. 递归法研究钛合金应力腐蚀机理[J]. 金属学报, 2007, 43(3): 249)
[9] Yin J Z, Wu Y S, Lu J, et al. Study on electrochemical behavior and SCC susceptibility of TC4 in methanol solution[J]. Rare Met. Mater. Eng., 2004, 32(6): 436
[9] (殷京瓯, 吴荫顺, 卢剑等. TC4钛合金在甲醇溶液中的应力腐蚀敏感性研究[J]. 稀有金属材料与工程, 2004, 32(6): 436)
[10] Lin C, Liu F, Zhao Q, et al. Corrosion behavior of TC4 titanium alloy in HF-HNO3 system[J]. Fail. Anal. Prevent., 2008, 3(2): 11
[10] (林翠, 刘枫, 赵晴等. 氢氟酸-硝酸体系中TC4钛合金的腐蚀行为[J]. 失效分析与预防, 2008, 3(2): 11)
[11] Li S Q, Lei J F, Liu Y Y, et al. Hot-salt stress corrosion of titanium alloys of Ti811 and TC4[J]. Corros. Sci. Prot. Technol., 2010, 22(2): 79
[11] (李少强, 雷家峰, 刘羽寅等. Ti8n和TC4合金的热盐应力腐蚀行为研究[J]. 腐蚀科学与防护技术, 2010, 22(2): 79)
[12] Chen J, Yan F Y, Wang J Z. Corrosion wear properties of TC4 titanium alloy in artificial seawater[J]. Tribology, 2012, 32(1): 1
[12] (陈君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究[J]. 摩擦学学报, 2012, 32(1): 1)
[13] Xiao J M. Metal Corrosion under Stress[M]. Beijing: Chemical Industry Press, 1990
[13] (肖纪美. 应力作用下的金属腐蚀[M]. 北京: 化学工业出版社, 1990)
[14] HB 5293-1984. Wedge pre-cracked specimens loaded WOL KISCC test methods [S]
[14] (HB 5293-1984. 楔型加载的WOL预裂纹试样KISCC试验方法 [S])
[15] Yang D J,Shen Z S. Science of Metal Corrosion[M]. Beijing: Metallurgical Industry Press, 1990
[15] (杨德钧,沈卓身. 金属腐蚀学[M]. 北京: 冶金工业出版社, 1999)
[16] Wang A A, Fan A M, Long J M, et al. A study on corrosion behavior of titanium alloys[J]. J. Kunming Inst. Technol., 1995, 20(2): 75
[16] (王安安, 樊爱民, 龙晋民等. 钛合金腐蚀行为的研究[J]. 昆明工学院学报, 1995, 20(2): 75)
[17] Magnin T, Chieragatti R, Oltra R. Mechanism of brittle fracture in a ductile 316 alloy during stress corrosion[J]. Acta Metall. Mater., 1990, 38(7): 1313
[18] Wu Y S, Jiang Y L, Chu H, et al. SCC susceptibility of the titanium alloy TA7 in alcohols solution[J]. J. Univ. Sci. Technol. Beijing, 2003, 25(1): 40
[18] (吴荫顺, 姜应律, 褚洪等. 钛合金TA7在醇溶液中的应力腐蚀敏感性[J]. 北京科技大学学报, 2003, 25(1): 40)
[1] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[8] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[9] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[11] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[12] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[13] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[14] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[15] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.